
2

The local level model

A basic example of the state space model is the local level model. In
this model the level component is allowed to vary in time. The level
component can be conceived of as the equivalent of the intercept a
in the classical regression model (1.1). As the intercept determines the
level of the regression line, the level component plays the same role in
state space modelling. The important difference is that the intercept in
a regression model is fixed whereas the level component in a state space
model is allowed to change from time point to time point. In case the level
component does not change over time and is fixed for all time points, the
level component is equivalent to the intercept. In other words, it is then a
global level and applicable for all time points. In case the level component
changes over time, the level component applies locally and therefore the
corresponding model is referred to as the local level model.

The local level model can be formulated as

yt = Ït + εt, εt ∼ NID(0, Û2
ε )

Ït+1 = Ït + Ót, Ót ∼ NID(0, Û2
Ó )

(2.1)

for t = 1, . . . , n, where Ït is the unobserved level at time t, εt is the obser-
vation disturbance at time t, and Ót is what is called the level disturbance
at time t. In the literature on state space models, the observation dis-
turbances εt are also referred to as the irregular component. The observa-
tion and level disturbances are all assumed to be serially and mutually
independent and normally distributed with zero mean and variances Û2

ε

and Û2
Ó , respectively. The first equation in (2.1) is called the observation

or measurement equation, while the second equation is called the state
equation. Since the level equation in (2.1) defines a random walk (see
Chapter 10), the local level model is also referred to as the random walk
plus noise model (where the noise refers to the irregular component).

9
Commandeur, Jacques J. F., and Siem Jan Koopman. An Introduction to State Space Time Series Analysis,
         Oxford University Press, Incorporated, 2007. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/duke/detail.action?docID=415081.
Created from duke on 2021-03-25 21:09:07.

C
op

yr
ig

ht
 ©

 2
00

7.
 O

xf
or

d 
U

ni
ve

rs
ity

 P
re

ss
, I

nc
or

po
ra

te
d.

 A
ll 

rig
ht

s 
re

se
rv

ed
.



The local level model

The second equation in (2.1) is crucial in time series analysis. In the
state equation, time dependencies in the observed time series are dealt
with by letting the state at time t + 1 be a function of the state at time
t. Therefore, it takes into account that the observed value of the series at
time point t + 1 is usually more similar to the observed value of the time
series at time point t than to any other previous value in the series.

When the state disturbances are all fixed on Ót = 0 for t = 1, . . . , n, model
(2.1) reduces to a deterministic model: in this case the level does not vary
over time. On the other hand, when the level is allowed to vary over
time, it is treated as a stochastic process. In Section 2.1 we discuss the
results of the analysis of the log of the number of UK drivers KSI with a
deterministic level. Then in Section 2.2, the latter results are compared
with those obtained with a stochastic level component. As the local level
model is not appropriate for the UK drivers KSI series, the model is also
applied to the annual numbers of road traffic fatalities in Norway in
Section 2.3.

2.1. Deterministic level

If the level disturbances in (2.1) are all fixed on Ót = 0 for t = 1, . . . , n, it is
easily verified that:

for t = 1: y1 = Ï1 + ε1,

Ï2 = Ï1 + Ó1 = Ï1 + 0 = Ï1

for t = 2: y2 = Ï2 + ε2 = Ï1 + ε2,

Ï3 = Ï2 + Ó2 = Ï2 + 0 = Ï1

for t = 3: y3 = Ï3 + ε3 = Ï1 + ε3,

Ï4 = Ï3 + Ó3 = Ï3 + 0 = Ï1

and so on.

Summarising, in this case the local level model (2.1) simplifies to

yt = Ï1 + εt, εt ∼ NID(0, Û2
ε ) (2.2)

for t = 1, . . . , n. Therefore, in this special situation everything relies on
the value of Ï1, the value of the level at time t = 1. Once this value is
established, it remains constant for all other time points t = 2, . . . , n.
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2.1. Deterministic level

Generally, in state space models the value of the unobserved state at
the beginning of the time series (i.e. at t = 1) is unknown. There are two
ways to deal with this problem. Either the researcher provides the first
value, based on theoretical considerations, or some previous research, for
example. Or this first value is estimated by a procedure that falls within
the class of state space methods. Since nothing is usually known about
the initial value of the state, the second approach is usually followed in
practice, and will be used in all further analyses discussed in the present
book. In state space modelling, the second approach is called diffuse
initialisation.

In classical regression analysis the unknown parameters are the inter-
cept and the regression coefficients, for which estimates can be obtained
analytically. In state space methods the unknown parameters include the
observation and state disturbance variances. These latter parameters are
also known as hyperparameters. Unlike classical regression analysis, when a
state space model contains two or more hyperparameters (i.e. disturbance
variances) the (maximum likelihood) estimation of these hyperparame-
ters requires an iterative procedure. The iterations aim to maximise the
likelihood value with respect to the hyperparameters (see also Chap-
ter 11). Numerical optimisation methods are employed for this task and
they are based on an iterative search process to find the maximum in a
numerically efficient way.

Since the variance of the level disturbances Û2
Ó is fixed at zero, only two

parameters need to be estimated in model (2.2). These two parameters are
Ï1 and Û2

ε . Using the diffuse initialisation method, the analysis of the log
of the number of UK drivers KSI with the deterministic level model yields
the following results:

it0 f= 0.3297597 df=9.731e-007 e1=2.690e-006 e2=3.521e-008
Strong convergence

This output reflects the numerical search procedure where it0 refers to the
initialisation step, f is the logged likelihood value for the hyperparameter
value considered at iteration 0 whereas df is the first derivative of the
likelihood function with respect to the hyperparameter and evaluated
at the value of the hyperparameter at iteration 0. The values e1 and e2
indicate other measures of convergence of the maximisation procedure.
In the numerical maximisation of the likelihood function, no iterations
are required for the estimation of the parameters of the deterministic level
model. This is in agreement with the fact that the parameter estimates
of classical linear regression models can be determined analytically. The
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The local level model

value of the log-likelihood function that is maximised in state space meth-
ods is 0.3297597. The maximum likelihood estimate of the variance of the
observation disturbances is Û̂2

ε = 0.029353, and the maximum likelihood
estimate of the level for t = 1 is Ï̂1 = 7.4061. The resulting equation for
model (2.2) is

yt = 7.4061 + εt.

Now, the sum of the log of the monthly number of UK drivers KSI in the
period 1969–1984 happens to be 1421.97. Since

ȳ =
1
n

n∑
t=1

yt =
1

192
1421.97 = 7.4061

for this time series, and

s2
y =

1
n − 1

n∑
t=1

(yt − ȳ)2 = 0.029353,

this extremely simple state space model actually computes the mean and
variance of the observed time series.

Thus, the best fitting decomposition based on model (2.2) is

yt = ȳ + (yt − ȳ). (2.3)

This is not surprising, since it is well known that the best estimate for the
parameter Ï minimising the least-squares function

f (Ï) =
n∑

t=1

(yt − Ï)2

equals

Ï̂ =
1
n

n∑
t=1

yt,

the mean of variable y.
The level for model (2.2) is displayed in Figure 2.1, together with the

observed time series. As the figure illustrates, the deterministic level is
indeed a constant and does not vary over time as a result. Figure 2.2
contains a plot of the observation disturbances εt corresponding to the
deterministic level model. Just as in the classical regression analysis dis-
cussed in Chapter 1, the disturbances εt of the deterministic level model
are not randomly distributed in this case, and follow a very systematic
pattern. In fact, the irregular component in Figure 2.2 simply consists
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2.1. Deterministic level

1970 1975 1980 1985

7.0

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9
log UK drivers KSI  deterministic level

Figure 2.1. Deterministic level.
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Figure 2.2. Irregular component for deterministic level model.
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The local level model

Table 2.1. Diagnostic tests for deterministic level model and log UK
drivers KSI.

statistic value critical value assumption satisfied

independence Q(15) 415.210 25.00 −
r (1) 0.699 ±0.14 −

r (12) 0.677 ±0.14 −
homoscedasticity H (64) 2.058 1.67 −
normality N 0.733 5.99 +

of the deviations of the observed time series from its mean, as already
implied by (2.3).

Diagnostic tests for the assumptions of independence, homoscedas-
ticity, and normality of the residuals of the analysis are presented in
Table 2.1. A discussion of the exact definition, computation and inter-
pretation of these diagnostic tests is postponed until Section 8.5. Even
without this knowledge, however, it is easily seen that the values of the
autocorrelations at lags 1 and 12 (see also Chapter 1), which are r (1) =
0.699 and r (12) = 0.677, respectively, both far exceed the 95% confidence
limits of ±2/

√
n = ±0.144 for this time series with n = 192 observations.

The high amount of dependency between the residuals is confirmed
by the very large value of the Q-test in Table 2.1. The Q-statistic is a
general omnibus test that can be used to check whether the combined
first k (in this case 15) autocorrelations in the correlogram deviate from
zero. Since Q(15) = 415.210 and because this value is much larger than
˜2

(15;0.05) = 25.00 (see Table 2.1), evaluated as a whole the first 15 autocor-
relations significantly deviate from zero, meaning that the null hypothesis
of independence must be rejected.

The H-statistic in Table 2.1 tests whether the variances of two consec-
utive and equal parts of the residuals are equal to one another. In the
present case, the test shows that the variance of the first 64 elements
of the residuals is unequal to the variance of the last 64 elements of
the residuals, because H(64) = 2.058 is larger than the critical value of
F(64,64;0.025) ≈ 1.67. This means that the assumption of homoscedasticity
of the residuals is also not satisfied in the present analysis.

Finally, the N-statistic in Table 2.1 tests whether the skewness and
kurtosis of the distribution of the residuals comply with a normal or
Gaussian distribution. Since N = 0.733 is smaller than the critical value of
˜2

(2;0.05) = 5.99 (see Table 2.1), the null hypothesis of normally distributed
residuals is not rejected.
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2.2. Stochastic level

Summarising, the residuals of the deterministic level model neither
satisfy the assumption of independence nor that of homoscedasticity;
only the assumption of normality is not violated.

In order to compare the different state space models illustrated in the
present book, throughout the Akaike Information Criterion (AIC) will be
used:

AIC =
1
n

[−2n log Ld + 2(q + w)] ,

where n is the number of observations in the time series, log Ld is the
value of the diffuse log-likelihood function which is maximised in state
space modelling, q is the number of diffuse initial values in the state, and
w is the total number of disturbance variances estimated in the analysis.
When comparing different models with the AIC the following rule holds:
smaller values denote better fitting models than larger ones. A very useful
property of this criterion is that it compensates for the number of esti-
mated parameters in a model, thus allowing for a fair comparison between
models involving different numbers of parameters. In the deterministic
level model only one variance is estimated (Û2

ε ), and one initial value (Ï1).
Therefore, the Akaike information criterion for the analysis of the log of
the number of drivers KSI with the deterministic level model equals

AIC =
1

192
[−2(192)(0.3297597) + 2(1 + 1)] = −0.638686.

In the following sections, this value will be used for purposes of compari-
son with other state space models.

2.2. Stochastic level

When the level Ït in model (2.1) is allowed to vary over time, on the other
hand, the following results are obtained when estimating the hyperpara-
meters by the method of maximum likelihood.

it0 f= 0.5673434 df= 0.08018 e1= 0.2550 e2= 0.003223
it1 f= 0.5799665 df= 0.1032 e1= 0.3199 e2= 0.3542
it2 f= 0.6404443 df= 0.08408 e1= 0.2048 e2= 0.02733
it3 f= 0.6424964 df= 0.03334 e1= 0.1025 e2= 0.003279
it4 f= 0.6429869 df= 0.02961 e1= 0.09162 e2= 0.0006207
it5 f= 0.6449777 df= 0.006552 e1= 0.02114 e2= 0.004098
it6 f= 0.6451632 df= 0.002400 e1= 0.007856 e2= 0.001422
it7 f= 0.6451949 df= 0.0004676 e1= 0.001543 e2= 0.0007765
it8 f= 0.6451960 df=3.338e-005 e1= 0.0001103 e2= 0.0001597
it9 f= 0.6451960 df=3.557e-006 e1=8.776e-006 e2=1.508e-005
Strong convergence
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The local level model
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Figure 2.3. Stochastic level.

The algorithm converges in nine iterations. At convergence the value
of the log-likelihood function is 0.6451960. The maximum likelihood
estimate of the variance of the irregular component is Û̂2

ε = 0.00222157
and of the level disturbance variance is Û̂2

Ó = 0.011866. The maximum
likelihood estimate of the initial value of the level at time point t = 1 is
Ï̂1 = 7.4150.

The stochastic level is illustrated in Figure 2.3, together with the
observed time series. It shows that the observed time series is recovered
quite well when the level is allowed to vary over time. It is nevertheless
questionable whether the local level is appropriate for describing all the
dynamics in the time series yt.

Figure 2.4 contains a plot of the irregular component for this analysis.
In this figure, the systematic pattern that was found in the residuals of the
previous analysis is absent, and the observation disturbances seem to be
much closer to independent random values, or – as is also said in control
engineering where state space methods originated – to white noise.

To some extent, this is confirmed by the diagnostic tests of the residuals
given in Table 2.2. The autocorrelation at lag 1 no longer deviates from
zero, and the value of the overall Q-test for independence is much smaller
than in the previous analysis. The test for heteroscedasticity is also no
longer significant. However, both the values of r (12) (the autocorrelation
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2.2. Stochastic level

1970 1975 1980 1985
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Figure 2.4. Irregular component for local level model.

at lag 12) and of the general Q-test still indicate significant serial correla-
tion in the residuals. Moreover, according to Table 2.2 the residuals of the
local level model do not satisfy the assumption of normality.

In the stochastic level model two variances are estimated (Û2
ε and Û2

Ó ),
and one diffuse element (Ï1). Therefore, the Akaike information criterion
for this analysis equals

AIC =
1

192
[−2(192)(0.6451960) + 2(1 + 2)] = −1.25914.

This value is much smaller than for the deterministic level model, mean-
ing that the stochastic level model fits the data better.

In conclusion, the stochastic level model appears to be an improvement
upon the deterministic level model. A lot of the dependencies between
the observation disturbances in Figure 2.2 have disappeared in Figure 2.4.

Table 2.2. Diagnostic tests for local level model and log UK drivers KSI.

statistic value critical value assumption satisfied

independence Q(15) 105.390 23.68 −
r (1) 0.009 ± 0.14 +

r (12) 0.537 ± 0.14 −
homoscedasticity H (64) 1.064 1.67 +
normality N 13.242 5.99 −
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The local level model

Moreover, the Akaike information criterion indicates that the stochastic
level model yields a better representation of the time series than the
deterministic level model. However, the diagnostic tests in Table 2.2 also
reveal that the stochastic level model is by no means the appropriate
model for describing the time series at hand, as will become clearer in
Chapter 4. In the next section, therefore, an analysis is presented where
the local level model provides a more adequate description of the data.

2.3. The local level model and Norwegian fatalities

Applying the local level model to the log of the annual number of road
traffic fatalities in Norway as observed for the 34 years of 1970 through to
2003 (see Appendix B and Figure 2.5), the following results are obtained.

it0 f= 0.7755299 df= 0.1692 e1= 0.5779 e2= 0.006216
it1 f= 0.8205220 df= 0.1248 e1= 0.4053 e2= 0.009750
it2 f= 0.8464841 df= 0.02166 e1= 0.06664 e2= 0.01080
it3 f= 0.8468295 df= 0.005806 e1= 0.01800 e2= 0.0007435
it4 f= 0.8468620 df= 0.0003182 e1= 0.0009326 e2= 0.0003626
it5 f= 0.8468622 df=1.945e-005 e1=5.699e-005 e2=2.894e-005
Strong convergence

At convergence the value of the log-likelihood function is 0.8468622. The
maximum likelihood estimate of the irregular variance is Û̂2

ε = 0.00326838,

1970 1975 1980 1985 1990 1995 2000 2005

5.6

5.7

5.8

5.9

6.0

6.1

6.2

6.3 log fatalities in Norway stochastic level

Figure 2.5. Stochastic level for Norwegian fatalities.
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2.3. The local level model and Norwegian fatalities
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Figure 2.6. Irregular component for Norwegian fatalities.

while the maximum likelihood estimate of the variance of the level distur-
bances equals Û̂2

Ó = 0.0047026. The maximum likelihood estimate of the
initial value of the level at time point t = 1 is Ï̂1 = 6.3048. The stochastic
level is illustrated in Figure 2.5, together with the observed time series.

Figure 2.6 contains a plot of the irregular component. The diagnostic
tests for independence, homoscedasticity, and normality of the residuals
of this analysis are given in Table 2.3. The autocorrelations at lags 1 and
4 are well within the 95% confidence limits of ±2/

√
n = ±0.343 for this

time series. Moreover, since Q(10) < ˜2
(9;0.05), H(11) < F(12,12;0.025), and N <

˜2
(2;0.05) (see also Section 8.5), these tests indicate that the residuals satisfy

all of the assumptions of the local level model (2.1).

Table 2.3. Diagnostic tests for local level model and log Norwegian
fatalities.

statistic value critical value assumption satisfied

independence Q(10) 6.228 16.92 +
r (1) −0.127 ±0.34 +
r (4) −0.105 ±0.34 +

homoscedasticity H (11) 1.746 3.28 +
normality N 1.191 5.99 +
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The local level model

The value of the Akaike information criterion for this analysis equals

AIC =
1

34
[−2(34)(0.8468622) + 2(1 + 2)] = −1.51725,

which is a great improvement upon the deterministic level model applied
to these data, since the AIC value for the deterministic model equals
0.040245. Adding a slope component (see Chapter 3) to model (2.1) does
not improve the description of this time series, as this results in an AIC
value of only −1.28035.
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