4

The local level model with seasonal

Most readers will probably have understood that an essential aspect of
the UK drivers KSI series has been overlooked in the analyses discussed
so far. The time series in Figure 1.2 has a yearly recurring pattern. The
nature of this pattern becomes even more clear in Figure 4.1 where
vertical lines separate each calendar year in the observed time series of
Figure 1.2.

Inspecting the monthly development for each year in Figure 4.1, the
following regularity emerges: more drivers are killed or seriously injured
at the end of a year than in other periods of a year. In time series analysis,
this recurring pattern is referred to as a seasonal effect. Whenever a time
series consists of hourly, daily, monthly, or quarterly observations with
respective periodicity of 24 (hours), 7 (days), 12 (months), or 4 (quarters),
one should always be on the alert for possible seasonal effects in the
series.

In a state space framework, the seasonal effect can be modelled by
adding a seasonal component either to the local level model or to the local
linear trend model. Since it was found in the previous chapter that the
slope component is redundant in describing the time series in Figure 4.1,
the investigation of the effect of adding a seasonal component will be
restricted to the local level model. In the case of quarterly data, this takes
the following form:

Copyright © 2007. Oxford University Press, Incorporated. All rights reserved.

Ve =pt +yt+ &, g+ ~ NID(O, of)
peel = pe + &t & ~ NID(O, o?)
YLl = — vt —v2r —yattaor  ap~NID(Q, 6?) (4.1)
Y2,t+1 = Y1.ts
Y3.t+1 = Y2 ts
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The local level model with seasonal

[— log UK drivers KSI |
791 :

781
76

741

7.3F

71F

7.0}

i i i i i i i i i i i i i

i i i
1970 1975 1980

Figure 4.1. Log of number of UK drivers KSI with time lines for years.

for t=1,...,n, where y; = y; + denotes the seasonal component. The dis-
turbances «; in (4.1) allow the seasonal to change over time. The initial
values w1, y1.1, y2.1 and y3 1 are treated as fixed and unknown coefficients.
In contrast with the level and slope components, where each com-
ponent requires one state equation, the seasonal component generally
requires (s — 1) state equations where s is given by the periodicity of the
seasonal. For quarterly data (where we have s = 4), three state equations
are needed, as is shown in (4.1). The fourth and fifth equations are
identities which can be interpreted as follows. Define y; ; as the ith quarter
of time period t. Then the fourth equation tells you that the quarter of the
next period f + 1 is the next quarter i + 1 from the current period ¢. Since
this is a fact of life we cannot add disturbances to such identity equations!
The third equation in (4.1) can also be written as

Vel = —Yt — Vi-1 — Yi-2 + wt, (4.2)

fort=s—1,...,n. We notice that the time index for (4.2) starts at s — 1
3. Since it follows from (4.1) that y; =y1.1, y2 =y12 =921 and y3 =y 3 =
y2.2 = y3.1, we also treat yq, v» and y3 as fixed and unknown coefficients.
Given a set of values for {y1, y2, y3}, the recursion (4.2) is valid for t =
s—1,...,n.
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The local level model with seasonal

When the seasonal effect y; is not allowed to change over time, we
require w; =0 for all t=s — 1,..., n. This is achieved by setting ¢2 = 0. It
follows that

s—1
> v =0, (4.3)
j=0

for t=s,...,n. When the seasonal is allowed to vary over time, that

is o> >0, (4.3) is not satisfied due to the random increments of ;.
However, the expectation of seasonal disturbance w; equals zero. As a
result, the expectation of the sum y;+yr_1 +... 4+ yr—_s41 also equals zero
fort=s,...,n.

Since the log of the number of UK drivers KSI in Figure 4.1 consists of
monthly instead of quarterly data, the periodicity of the seasonal is s = 12,
implying that the modelling of (4.1) requires a total of 12 state equations
(one for the level and 11 for the seasonal). The seasonal specification in
(4.1) is called a dummy seasonal. It may be noted that other specifications
than the dummy seasonal can be used too. For example, the trigonometric
seasonal can be considered. For details about such alternative specifica-
tions of the seasonal we refer to Durbin and Koopman (2001), as these are
beyond the scope of the present book.

4.1. Deterministic level and seasonal

Fixing the level and seasonal disturbances ¢; and o in (4.1) to zero, the
analysis of the time series in Figure 4.1 using diffuse initialisation of the
values of the 12 state equations at t = 1 yields the following results:

it0 f= 0.4174873 df=1.613e-006 e1=4.871e-006 e2=5.340e-008
Strong convergence

As is the case for all completely deterministic models, the estimation
process requires no iterations. At convergence the value of the log-
likelihood function is 0.4174873. The maximum likelihood estimate of
the variance of the observation disturbances is 52 = 0.0175885. The max-
imum likelihood estimate of u; is 1 = 7.4061. Since the level is deter-
ministic we have iy = a1 = 7.4061 for t = 1, ..., n. Therefore, the estimated
deterministic level is again equal to the mean of the observed time series
(see also Section 2.1). At this point, we refrain from giving the maximum
likelihood estimates of the initial values of the 11 state equations required
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4.1. Deterministic level and seasonal
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Figure 4.2. Combined deterministic level and seasonal.

for the modelling of the seasonal, because these are not very informative
in the present context.

The combined deterministic level and seasonal are displayed in
Figure 4.2, while these two components are plotted separately in
Figures 4.3 and 4.4, respectively.

By denoting y as the overall mean of the log of the numbers of drivers
KSI'and y; as the mean of the log of the numbers of drivers KSI for month
j in the series (j = 1,...,s), the deterministic level and seasonal model is
given by

fort=1,...,n Note that
s—1 s
Y 5ei=Y 7 -9 =0
j=0 j=1

from which it follows that the seasonal component satisfies (4.3). The
deterministic level and seasonal model actually performs a one-way
ANOVA with 12 treatment levels (see, e.g., Kirk, 1968). The F-test for
the seasonal (with denominator Ef =0.01758835) is F(11,180) = 12.614 and
this is very significant (p < 0.01). The F-test is based on the assumption
of random errors. However, as Figure 4.5 clearly indicates, the observation
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Figure 4.3. Deterministic level.
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Figure 4.4. Deterministic seasonal.
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4.1. Deterministic level and seasonal
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Figure 4.5. Irregular component for deterministic level and seasonal model.

disturbances of the deterministic level and seasonal model are not inde-
pendently distributed, and the F-test is therefore seriously flawed.

This is confirmed by the results of the diagnostic tests in Table 4.1. They
show that the residuals do not satisfy any of the assumptions, except for
normality.

Since we are dealing with monthly data, model (4.1) contains 12 state
equations for which 12 initial state values need to be estimated. Given
the fact that in addition one variance is estimated for the deterministic
level and seasonal model, the Akaike information criterion for this model
equals

1
AIC = 192 [—2(192)(0.4174873) + 2(12 + 1)] = —0.699558.

Table 4.1. Diagnostic tests for deterministic level and seasonal model
and log UK drivers KSI.

statistic value  critical value  assumption satisfied
independence Q(15) 751.580 25.00 -
r(1) 0.724 +0.14 -
r(12) 0.431 +0.14 -
homoscedasticity H(60) 3.400 1.67 -
normality N 1.971 5.99 +
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The local level model with seasonal

Therefore, the AIC of the deterministic level and seasonal model is, some-
what surprisingly, not as good as that of the deterministic linear trend
model (—0.796896), although it is slightly better than the deterministic
level model (—0.638686).

In the previous chapters it was found that deterministic state space
models are identical to some form of classical regression analysis. This
suggests that the deterministic level and seasonal model must also have
its counterpart in classical regression analysis. The question is: which clas-
sical regression model is involved here? Results identical to the determin-
istic level and seasonal model presented above are obtained by performing
the following classical multiple regression analysis.

Eleven variables are constructed according to the following recipe. The
first variable is given the value 11 (i.e.s — 1) whenever an observation in
the time series falls in the month of January, and minus one for all the
other months of the year. The second variable is set equal to 11 whenever
an observation in the time series falls in the month of February and minus
one elsewhere. And so on, until the eleventh and last variable. This last
variable is given the value 11 for the month of November and minus
one elsewhere. A classical multiple regression analysis with an intercept
variable together with these 11 ‘dummy’ variables against the log of UK
drivers KSI, yields an estimate of the intercept identical to the level shown
in Figure 4.3, while the sum of the 11 dummy variables weighted by their
respective regression coefficients is identical to the seasonal in Figure 4.4.
The overal sum of the seasonal effect in one year is obviously equal to
zero.

4.2. Stochastic level and seasonal

The level and the seasonal in (4.1) can be allowed to vary over time. In
that case, the following results are obtained:

it0 f= 0.6967041 df= 0.1701 el= 0.7878 e2= 0.003672
its f= 0.8803781 df=  0.08417 el= 0.4735 e2= 0.002996
it10 f= 0.9353563 df=  0.01276 el=  0.04076 e2= 0.001999
it1s = 0.9369055 df= 0.0002212 el= 0.0007954 e2= 0.0001283
it18  f= 0.9369063 df=6.131e-006 e1=1.809e-005 e2=8.189e-006

Strong convergence

At convergence the value of the log-likelihood function is 0.9369063. The
maximum likelihood estimate of the irregular variance is 52 = 0.00341592
and the maximum likelihood estimates of the state variances are given
by &7 =0.000935947 and G2 =0.00000050, respectively. Plots of the
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4.2. Stochastic level and seasonal
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Figure 4.6. Stochastic level.

stochastic level and seasonal obtained from this analysis are displayed in
Figures 4.6 and 4.7, respectively. The variance of the seasonal disturbances
is very small. This indicates that the seasonal pattern in the observed time
series hardly changes over the years, which is confirmed by inspection of
Figure 4.7.

For a better understanding of the interpretation of the seasonal compo-
nent in Figure 4.7, we focus on the first year of the seasonal component
(i.e. on 1969), see Figure 4.8. It shows that the largest number of drivers in
Great Britain were killed or seriously injured in the months of November
and December of 1969, while April 1969 resulted in the smallest number.
This pattern is repeated in all the other years of the series.

The irregular component for the stochastic level and seasonal model is
displayed in Figure 4.9. The residuals of the stochastic model are much
closer to independent random values than those obtained with the deter-
ministic model (see Figure 4.5). Whether ‘much closer’ is close enough
can be determined by the diagnostic tests in Table 4.2.

The first autocorrelation in the correlogram does not deviate from zero
but also the autocorrelation at lag 12 is close to zero. This is the first
of our analyses where we yield such a satisfactory result for this KSI
series. In all previous analyses of the series, the autocorrelation at lag
12 was found to be unacceptably large, see Tables 2.1, 2.2, 3.1, and 3.2.
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4.2. Stochastic level and seasonal

0.10 +

0.05 -

0.00

—0.05

-0.10 i

1970 1975 1980 1985

Figure 4.9. Irregular component for stochastic level and seasonal model.

The same applies to the general Q-test for independence based on the
first 15 autocorrelations, which is for the first time smaller than the
critical value of X(213,-o.05) =22.36. The reason of these satisfactory results
is that the the seasonality is explicitly modelled in the present analysis,
whereas the residuals of the local level and local linear trend model con-
tained the neglected seasonality in monthly data. Since the assumptions
of homoscedasticity and normality are also realistic (see Table 4.2), the
residuals of this analysis satisfy all the required criteria.

The Akaike information criterion for the stochastic level and seasonal
model equals

1
AIC = 755 [-2(192)(0.9369063) + 2(12 +3)] = ~1.71756,

Table 4.2. Diagnostic tests for stochastic level and seasonal model
and log UK drivers KSI.

statistic value  critical value  assumption satisfied
independence Q(15) 14.150 22.36 +
r(1) 0.039 +0.14 +
r(12) 0.014 +0.14 +
homoscedasticity H(60) 1.060 1.67 +
normality N 5.289 5.99 +
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The local level model with seasonal

indicating that this is the preferred model for the log of the UK drivers
KSI series so far, even though it requires the estimation of a total of 15
parameters: one variance for the irregular component, two variances for
the level and seasonal component, and 12 initial values of the state (one
for the level, and 11 for the seasonal). Moreover, the present model also
fits the data much better than the classical multiple regression analysis
obtained with deterministic level and seasonal components.

Since the variance of the seasonal disturbances is found to be almost
zero, in the next section we present the results of the analysis of the UK
drivers KSI series with a stochastic level and a deterministic seasonal.

4.3. Stochastic level and deterministic seasonal

Fixing the seasonal disturbances «; in model (4.1) to zero, but still allow-
ing the level to vary over time yields the following results:

it0 f= 0.9362753 df= 0.003305 el= 0.01239 e2= 0.0001078
itl f= 0.9362925 df= 0.003487 el= 0.01310 e2= 0.0003366
it2 f= 0.9363240 df= 0.002234 el= 0.008362 e2= 0.0003377
it3 f= 0.9363352 df= 0.001322 el= 0.004066 e2= 0.0002726
it4 f= 0.9363361 df= 0.0002666 el= 0.0008200 e2=4.323e-005
its f= 0.9363361 df=1.145e-005 e1=3.522e-005 e2=8.119e-006
Strong convergence

At convergence the value of the log-likelihood function is 0.9363361. The
maximum likelihood estimate of the variance of the irregular component
is 52 = 0.00351385, and the maximum likelihood estimate of the variance
of the level disturbances is 8? =0.000945723. Plots of the results of this
analysis are not shown here, because they are very similar to the ones
presented in Section 4.2. The same applies to the results of the diagnostic
tests which are very similar to those given in Table 4.2.

The Akaike information criterion for this model equals

1
192
indicating a slight improvement upon the previous model: the small
reduction in the value of the log-likelihood function is compensated
by the fact that the present model requires the estimation of only two
variances instead of three in the previous model.

The AIC value of —1.72684 for the stochastic level and deterministic
seasonal model is a significant improvement upon the local level model,
which yields an AIC value of —1.25914. Therefore, and in contrast with

AIC = —— [~2(192)(0.9363361) + 2(12 + 2)] = —1.72684
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4.4. The local level and seasonal model and UK inflation

the slope component, the addition of a seasonal component is essential
in obtaining a good description of the time series at hand.

In this chapter the first realistic and appropriate description of the log of
the number of UK drivers KSI is presented by combining a stochastic level
with a deterministic seasonal component. Furthermore it is shown that
a stochastic state space model can be reduced to its equivalent classical
regression model by fixing all state disturbances to zero. This means that
classical linear regression models can be viewed as deterministic state
space models.

4.4. The local level and seasonal model and UK inflation

We end this chapter by discussing the results of the analysis of a time
series consisting of quarterly UK inflation figures (as given in Appendix D,
and displayed at the top of Figure 4.10) with the local level and seasonal
model. In economics, the inflation is an important variable that refers
to a rise in the general level of prices (deflation usually refers to a fall in
prices). Economic policy makers find it important to have a good estimate
of inflation. In practice, inflation is taken as the relative price change,
usually expressed in a percentage.

[——quarterly price changes in UK stochastic level |
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Figure 4.10. Stochastic level, seasonal and irregular in UK inflation series.
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The local level model with seasonal

The percentage change of the price level over a quarter is not considered
to be a reliable estimator of inflation. Instead, quarterly time series of
price changes are analysed by time series models to assess inflation. The
local level model is an appropriate candidate for this purpose. The final
estimate of the level is then an appropriate estimator of the underlying
rate of inflation as this represents the underlying inflation for the inter-
mediate and longer term. Inflation relates to average household purchases
that can be subject to seasonal variations due to events such as Christmas
and summer holiday. As we are dealing with quarterly data, we include a
stochastic seasonal component with a periodicity of s = 4 in the local level
model. This approach of measuring inflation is illustrated by applying it to
quarterly price changes in the United Kingdom for the 52 years from 1950
through to 2001 (yielding a total of n =352 x 4 = 208 observations). The
estimation of the parameters in model (4.1) applied to the UK inflation
series gives the following results:

it0 f= 3.023196 df= 0.1800 el= 1.119 e2= 0.002894
it1 f= 3.069515 df= 0.1586 el= 1.015 e2=  0.01299
it2 f= 3.164341 df= 0.1016 el= 0.5279 e2=  0.01150
its f= 3.194490 df=  0.02758 el= 0.1484 e2= 0.001452
it10 f= 3.198464 df=4.081e-005 el= 0.0002241 e2=5.183e-005
it11 f= 3.198464 df=3.960e-006 e1=2.175e-005 e2=3.472e-006

Strong convergence

At convergence the value of the log-likelihood function is 3.198464. The
maximum likelihood estimate of the irregular variance is 52 = 3.3717 x
107> and the maximum likelihood estimates of the variances of the
level and seasonal disturbances are equal to ’E? =2.1197 x 10~ and & =
0.0109 x 1073, respectively.

The estimate of the final value of the level at time point f =208 is
20 = 0.0020426. This is our estimate of inflation. As a result, relative
prices have increased overall by 0.20% in the final months of 2001.
This is rather low. The evolution of inflation over time is reflected by
the estimated level component and is presented in the upper graph of
Figure 4.10, together with the observed price changes. It is noteworthy
that the periods of highest inflation in the UK occurred in the middle of
the 1970s and at the end of the 1970s. These periods coincide with the
well-known oil and energy crises in the 1970s.

Graphs of the stochastic seasonal and irregular components are also
displayed in Figure 4.10. Although the variance of the seasonal distur-
bances is smaller than that of the other two components, the changes over
time in the estimated seasonal component of inflation series are clearly
visible. The level component reflects the underlying level of inflation and
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4.4. The local level and seasonal model and UK inflation

Table 4.3. Diagnostic tests for local level and seasonal model and UK
inflation series.

statistic value  critical value  assumption satisfied
independence Q(10) 7.573 15.507 +
r(1) 0.049 +0.14 +
r(4) -0.0622 +0.14 +
homoscedasticity H(68) 2.738 1.48 —
normality N 171.550 5.99 -

its evolution over time is quite smooth. The residuals of this level plus
seasonal model are close to independent random values (white noise).
Some outlier observations appear in the irregular component but apart
from these, the residuals seem quite random. Whether the residuals of the
local level and seasonal model are close enough to a random process (see
Section 10.1.2 for the definition of a random process) can be established
by inspection of the diagnostic tests given in Table 4.3.

The last column in Table 4.3 shows that the diagnostics for indepen-
dence are quite satisfactory. However, the assumptions of homoscedastic-
ity and normality tests are clearly violated. The local level and seasonal
model is therefore able to represent the dynamic features in the UK
inflation series, but there are also some aspects in the series that still need
to be accounted for. Specifically, the neglect in the present model of the
large shocks in the estimated irregular component for the UK inflation
series at the time points corresponding to the second quarter of 1975 and
to the third quarter of 1979 deserve closer attention. It should not come
as a surprise that these two time points are related to the world-wide oil
and energy crises in the 1970s. An appropriate treatment of these ‘outlier
observations’ will be discussed in Section 7.4.

The AIC for the present model equals

AIC = 2(1)78 [—2(208)(3.198464) + 2(4 + 3)] = —6.32962,

and this value will be used for reference purposes in Chapter 7.

In Chapters 5 and 6, components of the state are introduced that can
be used to obtain explanations for the observed developments of a time
series. The discussion of these components will be illustrated by adding
them to the UK drivers KSI series. To keep the exposition as simple as
possible, the seasonal component will temporarily be removed from these
analyses, even though this component is clearly essential in describing the
UK drivers KSI series. In the next two chapters, we are not concerned with
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The local level model with seasonal

the appropriateness of the models when applied to the UK drivers KSI
series (and diagnostic residual tests will therefore not be presented). We
mainly focus on various issues concerning the inclusion of explanatory
variables in the state space models of Chapters 2 and 3. Nevertheless,
in Chapter 7 — where a model is presented for the combined description
and explanation of the log of the UK number of drivers KSI - the seasonal
component will be added to the state equations.

Copyright © 2007. Oxford University Press, Incorporated. All rights reserved.

46
Commandeur, Jacques J. F., and Siem Jan Koopman. An Introduction to State Space Time Series Analysis,
Oxford University Press, Incorporated, 2007. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/duke/detail.action?docID=41508
Created from duke on 2021-03-25 21:09:47.



