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CHAPTER 8

MODEL DIAGNOSTICS

We have now discussed methods for specifying models and for efficiently estimating the
parameters in those models. Model diagnostics, or model criticism, is concerned with
testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate mod-
ifications. We shall present two complementary approaches: analysis of residuals from
the fitted model and analysis of overparameterized models; that is, models that are more
general than the proposed model but that contain the proposed model as a special case.

8.1 Residual Analysis

We already used the basic ideas of residual analysis in Section 3.6 on page 42 when we
checked the adequacy of fitted deterministic trend models. With autoregressive models,
residuals are defined in direct analogy to that earlier work. Consider in particular an
AR(2) model with a constant term:

(8.1.1)

Having estimated φ1, φ2, and θ0, the residuals are defined as

(8.1.2)

For general ARMA models containing moving average terms, we use the inverted,
infinite autoregressive form of the model to define residuals. For simplicity, we assume
that θ0 is zero. From the inverted form of the model, Equation (4.5.5) on page 80, we
have

so that the residuals are defined as

(8.1.3)

Here the π’s are not estimated directly but rather implicitly as functions of the φ’s and
θ’s. In fact, the residuals are not calculated using this equation but as a by-product of the
estimation of the φ’s and θ’s. In Chapter 9, we shall argue, that

Yt φ1Yt 1– φ2Yt 2– θ0 et+ + +=

ê t Yt φ̂1Yt 1– φ̂2Yt 2––– θ̂0–=

Yt π1Yt 1– π2Yt 2– π3Yt 3–
… et+ + + +=

ê t Yt π̂1Yt 1– π̂2Yt 2––– π̂3Yt 3–– …–=

Ŷ t π̂1Yt 1– π̂2Yt 2– π̂3Yt 3–
…+ + +=



176 Model Diagnostics

is the best forecast of Yt based on Yt − 1, Yt − 2, Yt − 3,… . Thus Equation (8.1.3) can be
rewritten as

residual = actual − predicted

in direct analogy with regression models. Compare this with Section 3.6 on page 42.
If the model is correctly specified and the parameter estimates are reasonably close

to the true values, then the residuals should have nearly the properties of white noise.
They should behave roughly like independent, identically distributed normal variables
with zero means and common standard deviations. Deviations from these properties can
help us discover a more appropriate model.

Plots of the Residuals

Our first diagnostic check is to inspect a plot of the residuals over time. If the model is
adequate, we expect the plot to suggest a rectangular scatter around a zero horizontal
level with no trends whatsoever.

Exhibit 8.1 shows such a plot for the standardized residuals from the AR(1) model
fitted to the industrial color property series. Standardization allows us to see residuals of
unusual size much more easily. The parameters were estimated using maximum likeli-
hood. This plot supports the model, as no trends are present.

Exhibit 8.1 Standardized Residuals from AR(1) Model of Color

> win.graph(width=4.875,height=3,pointsize=8)
> data(color)
> m1.color=arima(color,order=c(1,0,0)); m1.color
> plot(rstandard(m1.color),ylab ='Standardized Residuals', 

type='o'); abline(h=0)

As a second example, we consider the Canadian hare abundance series. We esti-
mate a subset AR(3) model with φ2 set to zero, as suggested by the discussion following
Exhibit 7.8 on page 166. The estimated model is
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(8.1.4)

and the time series plot of the standardized residuals from this model is shown in
Exhibit 8.2. Here we see possible reduced variation in the middle of the series and
increased variation near the end of the series—not exactly an ideal plot of residuals.†

Exhibit 8.2 Standardized Residuals from AR(3) Model for Sqrt(Hare)

> data(hare)
> m1.hare=arima(sqrt(hare),order=c(3,0,0)); m1.hare
> m2.hare=arima(sqrt(hare),order=c(3,0,0),fixed=c(NA,0,NA,NA)) 
> m2.hare
> # Note that the intercept term given in R is actually the mean 

in the centered form of the ARMA model; that is, if 
y(t)=sqrt(hare)-intercept, then the model is 
y(t)=0.919*y(t-1)-0.5313*y(t-3)+e(t) 

> # So the 'true' intercept equals 5.6889*(1-0.919+0.5313)=3.483
> plot(rstandard(m2.hare),ylab='Standardized Residuals',type='o')
> abline(h=0)

Exhibit 8.3 displays the time series plot of the standardized residuals from the
IMA(1,1) model estimated for the logarithms of the oil price time series. The model was
fitted using maximum likelihood estimation. There are at least two or three residuals
early in the series with magnitudes larger than 3—very unusual in a standard normal
distribution.‡ Ideally, we should go back to those months and try to learn what outside
factors may have influenced unusually large drops or unusually large increases in the
price of oil.

† The seemingly large negative standardized residuals are not outliers according to the Bon-
ferroni outlier criterion with critical values ±3.15.

‡ The Bonferroni critical values with n = 241 and α = 0.05 are ±3.71, so the outliers do
appear to be real. We will model them in Chapter 11.

Yt 3.483 0.919 Yt 1– 0.5313 Yt 3–– et++=
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Exhibit 8.3 Standardized Residuals from Log Oil Price IMA(1,1) Model

> data(oil.price)
> m1.oil=arima(log(oil.price),order=c(0,1,1))
> plot(rstandard(m1.oil),ylab='Standardized residuals',type='l')
> abline(h=0)

Normality of the Residuals

As we saw in Chapter 3, quantile-quantile plots are an effective tool for assessing nor-
mality. Here we apply them to residuals.

A quantile-quantile plot of the residuals from the AR(1) model estimated for the
industrial color property series is shown in Exhibit 8.4. The points seem to follow the
straight line fairly closely—especially the extreme values. This graph would not lead us
to reject normality of the error terms in this model. In addition, the Shapiro-Wilk nor-
mality test applied to the residuals produces a test statistic of W = 0.9754, which corre-
sponds to a p-value of 0.6057, and we would not reject normality based on this test.

Time

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

1990 1995 2000 2005

−4
−2

0
2

4



8.1  Residual Analysis 179

Exhibit 8.4 Quantile-Quantile Plot: Residuals from AR(1) Color Model

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(residuals(m1.color)); qqline(residuals(m1.color))

The quantile-quantile plot for the residuals from the AR(3) model for the square
root of the hare abundance time series is displayed in Exhibit 8.5. Here the extreme val-
ues look suspect. However, the sample is small (n = 31) and, as stated earlier, the Bon-
ferroni criteria for outliers do not indicate cause for alarm.

Exhibit 8.5 Quantile-Quantile Plot: Residuals from AR(3) for Hare

> qqnorm(residuals(m1.hare)); qqline(residuals(m1.hare))

Exhibit 8.6 gives the quantile-quantile plot for the residuals from the IMA(1,1)
model that was used to model the logarithms of the oil price series. Here the outliers are
quite prominent, and we will deal with them in Chapter 11.
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Exhibit 8.6 Quantile-Quantile Plot: Residuals from IMA(1,1) Model for 
Oil

> qqnorm(residuals(m1.oil)); qqline(residuals(m1.oil))

Autocorrelation of the Residuals

To check on the independence of the noise terms in the model, we consider the sample
autocorrelation function of the residuals, denoted . From Equation (6.1.3) on
page 110, we know that for true white noise and large n, the sample autocorrelations are
approximately uncorrelated and normally distributed with zero means and variance 1/n.
Unfortunately, even residuals from a correctly specified model with efficiently esti-
mated parameters have somewhat different properties. This was first explored for multi-
ple- regression models in a series of papers by Durbin and Watson (1950, 1951, 1971)
and for autoregressive models in Durbin (1970). The key reference on the distribution of
residual autocorrelations in ARIMA models is Box and Pierce (1970), the results of
which were generalized in McLeod (1978).

Generally speaking, the residuals are approximately normally distributed with zero
means; however, for small lags k and j, the variance of can be substantially less than
1/n and the estimates and can be highly correlated. For larger lags, the approxi-
mate variance 1/n does apply, and further and  are approximately uncorrelated.

As an example of these results, consider a correctly specified and efficiently esti-
mated AR(1) model. It can be shown that, for large n,

(8.1.5)

(8.1.6)

(8.1.7)
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r̂ k

r̂ k
r̂ k r̂ j

r̂ k r̂ j

Var r̂ 1( ) φ2

n
-----≈

Var r̂ k( ) 1 1 φ2–( )φ2k 2––
n

--------------------------------------------  for  k 1>≈

Corr r̂ 1 r̂ k,( ) sign φ( ) 1 φ2–( )φk 2–

1 1 φ2–( )φ2k 2––
--------------------------------------------  for  k 1>–≈
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where

The table in Exhibit 8.7 illustrates these formulas for a variety of values of φ and k.
Notice that is a reasonable approximation for k ≥ 2 over a wide range of
φ-values.

Exhibit 8.7 Approximations for Residual Autocorrelations in AR(1) 
Models

If we apply these results to the AR(1) model that was estimated for the industrial
color property time series with = 0.57 and n = 35, we obtain the results shown in
Exhibit 8.8. 

Exhibit 8.8 Approximate Standard Deviations of Residual ACF values

A graph of the sample ACF of these residuals is shown in Exhibit 8.9. The dashed
horizontal lines plotted are based on the large lag standard error of ± . There is no
evidence of autocorrelation in the residuals of this model.

φ 0.3 0.5 0.7 0.9 φ 0.3 0.5 0.7 0.9

k Standard deviation of 
times 

Correlation  with 

1 0.30 0.50 0.70 0.90 1.00 1.00 1.00 1.00

2 0.96 0.90 0.87 0.92 −0.95 −0.83 −0.59 −0.21

3 1.00 0.98 0.94 0.94 −0.27 −0.38 −0.38 −0.18

4 1.00 0.99 0.97 0.95 −0.08 −0.19 −0.26 −0.16

5 1.00 1.00 0.99 0.96 −0.02 −0.09 −0.18 −0.14

6 1.00 1.00 0.99 0.97 −0.01 −0.05 −0.12 −0.13

7 1.00 1.00 1.00 0.97 −0.00 −0.02 −0.09 −0.12

8 1.00 1.00 1.00 0.98 −0.00 −0.01 −0.06 −0.10

9 1.00 1.00 1.00 0.99 −0.00 −0.00 −0.03 −0.08

Lag k 1 2 3 4 5 > 5

0.096 0.149 0.163 0.167 0.168 0.169

sign φ( )
  1   if  φ 0>
  0   if  φ 0=

1   if  φ 0<–⎩
⎪
⎨
⎪
⎧

=

Var r̂ 1( ) 1 n⁄≈

r̂ k
n

r̂ 1 r̂ k

φ̂

Var̂ r̂ k( )

2 n⁄



182 Model Diagnostics

Exhibit 8.9 Sample ACF of Residuals from AR(1) Model for Color

> win.graph(width=4.875,height=3,pointsize=8)
> acf(residuals(m1.color))

For an AR(2) model, it can be shown that

(8.1.8)

and

(8.1.9)

If the AR(2) parameters are not too close to the stationarity boundary shown in Exhibit
4.17 on page 72, then

(8.1.10)

If we fit an AR(2) model† by maximum likelihood to the square root of the hare
abundance series, we find that = 1.351 and = −0.776. Thus we have

† The AR(2) model is not quite as good as the AR(3) model that we estimated earlier, but it
still fits quite well and serves as a reasonable example here.

2 4 6 8 10 12 14

−0
.3

−0
.1

0.
1

0.
3

Lag

A
C

F

Var r̂ 1( )
φ2

2

n
------≈

Var r̂ 2( )
φ2

2 φ1
2 1 φ2+( )2+

n
-----------------------------------------≈

Var r̂ k( ) 1
n
---   for k 3≥≈

φ̂1 φ̂̂2

Var̂ r̂ 1( ) 0.776–

35
-------------------≈ 0.131=

Var̂ r̂ 2( ) 0.776–( )2 1.351( )2 1 0.776–( )+( )2+
35

------------------------------------------------------------------------------------------≈ 0.141=

Var̂ r̂ k( ) 1 35⁄≈ 0.169 for k 3≥=
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Exhibit 8.10 displays the sample ACF of the residuals from the AR(2) model of the
square root of the hare abundance. The lag 1 autocorrelation here equals −0.261, which
is close to 2 standard errors below zero but not quite. The lag 4 autocorrelation equals
−0.318, but its standard error is 0.169. We conclude that the graph does not show statis-
tically significant evidence of nonzero autocorrelation in the residuals.†

Exhibit 8.10 Sample ACF of Residuals from AR(2) Model for Hare

> acf(residuals(arima(sqrt(hare),order=c(2,0,0))))

With monthly data, we would pay special attention to possible excessive autocorre-
lation in the residuals at lags 12, 24, and so forth. With quarterly series, lags 4, 8, and so
forth would merit special attention. Chapter 10 contains examples of these ideas.

It can be shown that results analogous to those for AR models hold for MA models.
In particular, replacing φ by θ in Equations (8.1.5), (8.1.6), and( 8.1.7) gives the results
for the MA(1) case. Similarly, results for the MA(2) case can be stated by replacing φ1
and φ2 by θ1 and θ2, respectively, in Equations (8.1.8), (8.1.9), and (8.1.10). Results for
general ARMA models may be found in Box and Pierce (1970) and McLeod (1978).

The Ljung-Box Test

In addition to looking at residual correlations at individual lags, it is useful to have a test
that takes into account their magnitudes as a group. For example, it may be that most of
the residual autocorrelations are moderate, some even close to their critical values, but,
taken together, they seem excessive. Box and Pierce (1970) proposed the statistic

(8.1.11)

to address this possibility. They showed that if the correct ARMA(p,q) model is esti-
mated, then, for large n, Q has an approximate chi-square distribution with K − p − q

† Recall that an AR(3) model fits these data even better and has even less autocorrelation in
its residuals, see Exercise 8.7.

2 4 6 8 10 12 14

−0
.3

−0
.1

0.
1

0.
3

Lag

A
C

F

Q n r̂ 1
2 r̂ 2

2 … r̂ K
2+ + +( )=
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degrees of freedom. Fitting an erroneous model would tend to inflate Q. Thus, a general
“portmanteau” test would reject the ARMA(p,q) model if the observed value of Q
exceeded an appropriate critical value in a chi-square distribution with K − p − q degrees
of freedom. (Here the maximum lag K is selected somewhat arbitrarily but large enough
that the ψ-weights are negligible for j > K.)

The chi-square distribution for Q is based on a limit theorem as , but Ljung
and Box (1978) subsequently discovered that even for n = 100, the approximation is not
satisfactory. By modifying the Q statistic slightly, they defined a test statistic whose null
distribution is much closer to chi-square for typical sample sizes. The modified
Box-Pierce, or Ljung-Box, statistic is given by

(8.1.12)

Notice that since (n + 2)/(n − k) > 1 for every k ≥ 1, we have Q* > Q, which partly
explains why the original statistic Q tended to overlook inadequate models. More details
on the exact distributions of Q* and Q for finite samples can be found in Ljung and Box
(1978), see also Davies, Triggs, and Newbold (1977).

Exhibit 8.11 lists the first six autocorrelations of the residuals from the AR(1) fitted
model for the color property series. Here n = 35.

Exhibit 8.11 Residual Autocorrelation Values from AR(1) Model for Color

> acf(residuals(m1.color),plot=F)$acf
> signif(acf(residuals(m1.color),plot=F)$acf[1:6],2)
> # display the first 6 acf values to 2 significant digits

The Ljung-Box test statistic with K = 6 is equal to

This is referred to a chi-square distribution with 6 − 1 = 5 degrees of freedom. This leads
to a p-value of 0.998, so we have no evidence to reject the null hypothesis that the error
terms are uncorrelated.

Exhibit 8.12 shows three of our diagnostic tools in one display—a sequence plot of
the standardized residuals, the sample ACF of the residuals, and p-values for the
Ljung-Box test statistic for a whole range of values of K from 5 to 15. The horizontal
dashed line at 5% helps judge the size of the p-values. In this instance, everything looks
very good. The estimated AR(1) model seems to be capturing the dependence structure
of the color property time series quite well.

Lag k 1 2 3 4 5 6

Residual ACF −0.051 0.032 0.047 0.021 −0.017 −0.019

n ∞→

Q* n n 2+( )
r̂ 1

2

n 1–
------------

r̂ 2
2

n 2–
------------ … r̂ K

2

n K–
-------------+ + +⎝ ⎠

⎛ ⎞=

Q* 35 35 2+( ) 0.051–( )2

35 1–
------------------------ 0.032( )2

35 2–
--------------------- 0.047( )2

35 3–
---------------------+ +⎝

⎛=

0.021( )2

35 4–
--------------------- 0.017–( )2

35 5–
------------------------ 0.019–( )2

35 6–
------------------------+ ++ ⎠

⎞ 0.28≈



8.2  Overfitting and Parameter Redundancy 185

Exhibit 8.12 Diagnostic Display for the AR(1) Model of Color Property

> win.graph(width=4.875,height=4.5)
> tsdiag(m1.color,gof=15,omit.initial=F)

As in Chapter 3, the runs test may also be used to assess dependence in error terms
via the residuals. Applying the test to the residuals from the AR(3) model for the Cana-
dian hare abundance series, we obtain expected runs of 16.09677 versus observed runs
of 18. The corresponding p-value is 0.602, so we do not have statistically significant
evidence against independence of the error terms in this model.

8.2 Overfitting and Parameter Redundancy

Our second basic diagnostic tool is that of overfitting. After specifying and fitting what
we believe to be an adequate model, we fit a slightly more general model; that is, a
model “close by” that contains the original model as a special case. For example, if an
AR(2) model seems appropriate, we might overfit with an AR(3) model. The original
AR(2) model would be confirmed if:

1. the estimate of the additional parameter, φ3, is not significantly different from
zero, and

2. the estimates for the parameters in common, φ1 and φ2, do not change signifi-
cantly from their original estimates.
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As an example, we have specified, fitted, and examined the residuals of an AR(1)
model for the industrial color property time series. Exhibit 8.13 displays the output from
the R software from fitting the AR(1) model, and Exhibit 8.14 shows the results from
fitting an AR(2) model to the same series. First note that, in Exhibit 8.14, the estimate of
φ2 is not statistically different from zero. This fact supports the choice of the AR(1)
model. Secondly, we note that the two estimates of φ1 are quite close—especially when
we take into account the magnitude of their standard errors. Finally, note that while the
AR(2) model has a slightly larger log-likelihood value, the AR(1) fit has a smaller AIC
value. The penalty for fitting the more complex AR(2) model is sufficient to choose the
simpler AR(1) model.

Exhibit 8.13 AR(1) Model Results for the Color Property Series

Exhibit 8.14 AR(2) Model Results for the Color Property Series

> arima(color,order=c(2,0,0))

A different overfit for this series would be to try an ARMA(1,1) model. Exhibit
8.15 displays the results of this fit. Notice that the standard errors of the estimated coef-
ficients for this fit are rather larger than what we see in Exhibits 8.13 and 8.14. Regard-
less, the estimate of φ1 from this fit is not significantly different from the estimate in
Exhibit 8.13. Furthermore, as before, the estimate of the new parameter, θ, is not signif-
icantly different from zero. This adds further support to the AR(1) model.

Coefficients:†

† m1.color # R code to obtain table

ar1 Intercept‡

‡ Recall that the intercept here is the estimate of the process mean μ—not θ0.

0.5705 74.3293

s.e. 0.1435  1.9151

sigma^2 estimated as 24.83: log-likelihood = -106.07, AIC = 216.15

Coefficients: ar1 ar2 Intercept

0.5173 0.1005 74.1551

s.e. 0.1717 0.1815 2.1463

sigma^2 estimated as 24.6: log-likelihood = -105.92, AIC = 217.84
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Exhibit 8.15 Overfit of an ARMA(1,1) Model for the Color Series

> arima(color,order=c(1,0,1))

As we have noted, any ARMA(p,q) model can be considered as a special case of a
more general ARMA model with the additional parameters equal to zero. However,
when generalizing ARMA models, we must be aware of the problem of parameter
redundancy or lack of identifiability.

To make these points clear, consider an ARMA(1,2) model:

(8.2.1)

Now replace t by t − 1 to obtain

(8.2.2)

If we multiply both sides of Equation (8.2.2) by any constant c and then subtract it from
Equation (8.2.1), we obtain (after rearranging)

This apparently defines an ARMA(2,3) process. But notice that we have the factoriza-
tions

and

Thus the AR and MA characteristic polynomials in the ARMA(2,3) process have a
common factor of (1 − cx). Even though Yt does satisfy the ARMA(2,3) model, clearly
the parameters in that model are not unique—the constant c is completely arbitrary. We
say that we have parameter redundancy in the ARMA(2,3) model.†

The implications for fitting and overfitting models are as follows:

1. Specify the original model carefully. If a simple model seems at all promising,
check it out before trying a more complicated model.

2. When overfitting, do not increase the orders of both the AR and MA parts of the
model simultaneously.

Coefficients: ar1 ma1 Intercept

0.6721 −0.1467 74.1730

s.e. 0.2147 0.2742 2.1357

sigma^2 estimated as 24.63: log-likelihood = -105.94, AIC = 219.88

† In backshift notation, if is a correct model, then so is  =
for any constant c. To have unique parameterization in an ARMA model,

we must cancel any common factors in the AR and MA characteristic polynomials.

Yt φYt 1– et θ1et 1–– θ2et 2––+=

Yt 1– φYt 2– et 1– θ1et 2–– θ2et 3––+=

Yt φ c+( )Yt 1–– φcYt 2–+ et θ1 c+( )et 1–– θ2 θ1c–( )et 2–– cθ2et 3–+=

1 φ c+( )x– φcx2+ 1 φx–( ) 1 cx–( )=

1 θ1 c+( )x– θ2 cθ1–( )x2– cθ2x3+ 1 θ1x– θ2x2–( ) 1 cx–( )=

φ B( )Yt θ B( )et= 1 cB–( )φ B( )Yt
1 cB–( )θ B( )et
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3. Extend the model in directions suggested by the analysis of the residuals. For
example, if after fitting an MA(1) model, substantial correlation remains at lag 2
in the residuals, try an MA(2), not an ARMA(1,1).

As an example, consider the color property series once more. We have seen that an
AR(1) model fits quite well. Suppose we try an ARMA(2,1) model. The results of this
fit are shown in Exhibit 8.16. Notice that even though the estimate of and the
log-likelihood and AIC values are not too far from their best values, the estimates of φ1,
φ2, and θ are way off, and none would be considered different from zero statistically.

Exhibit 8.16 Overfitted ARMA(2,1) Model for the Color Property Series

> arima(color,order=c(2,0,1))

8.3 Summary

The ideas of residual analysis begun in Chapter 3 were considerably expanded in this
chapter. We looked at various plots of the residuals, checking the error terms for con-
stant variance, normality, and independence. The properties of the sample autocorrela-
tion of the residuals play a significant role in these diagnostics. The Ljung-Box statistic
portmanteau test was discussed as a summary of the autocorrelation in the residuals.
Lastly, the ideas of overfitting and parameter redundancy were presented.

EXERCISES

8.1 For an AR(1) model with and n = 100, the lag 1 sample autocorrelation of
the residuals is 0.5. Should we consider this unusual? Why or why not?

8.2 Repeat Exercise 8.1 for an MA(1) model with and n = 100.
8.3 Based on a series of length n = 200, we fit an AR(2) model and obtain residual

autocorrelations of = 0.13, = 0.13, and = 0.12. If = 1.1 and = −0.8,
do these residual autocorrelations support the AR(2) specification? Individually?
Jointly?

Coefficients: ar1 ar2 ma1 Intercept

0.2189 0.2735 0.3036 74.1653

s.e. 2.0056 1.1376 2.0650 2.1121

sigma^2 estimated as 24.58: log-likelihood = −105.91, AIC = 219.82

σe
2

φ 0.5≈

θ 0.5≈

r̂ 1 r̂ 2 r̂ 3 φ̂1 φ̂2
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8.4 Simulate an AR(1) model with n = 30 and φ = 0.5.
(a) Fit the correctly specified AR(1) model and look at a time series plot of the

residuals. Does the plot support the AR(1) specification?
(b) Display a normal quantile-quantile plot of the standardized residuals. Does

the plot support the AR(1) specification?
(c) Display the sample ACF of the residuals. Does the plot support the AR(1)

specification?
(d) Calculate the Ljung-Box statistic summing to K = 8. Does this statistic sup-

port the AR(1) specification?
8.5 Simulate an MA(1) model with n = 36 and θ = −0.5.

(a) Fit the correctly specified MA(1) model and look at a time series plot of the
residuals. Does the plot support the MA(1) specification?

(b) Display a normal quantile-quantile plot of the standardized residuals. Does
the plot support the MA(1) specification?

(c) Display the sample ACF of the residuals. Does the plot support the MA(1)
specification?

(d) Calculate the Ljung-Box statistic summing to K = 6. Does this statistic sup-
port the MA(1) specification?

8.6 Simulate an AR(2) model with n = 48, φ1 = 1.5, and φ2 = −0.75.
(a) Fit the correctly specified AR(2) model and look at a time series plot of the

residuals. Does the plot support the AR(2) specification?
(b) Display a normal quantile-quantile plot of the standardized residuals. Does

the plot support the AR(2) specification?
(c) Display the sample ACF of the residuals. Does the plot support the AR(2)

specification?
(d) Calculate the Ljung-Box statistic summing to K = 12. Does this statistic sup-

port the AR(2) specification?
8.7 Fit an AR(3) model by maximum likelihood to the square root of the hare abun-

dance series (filename hare).
(a) Plot the sample ACF of the residuals. Comment on the size of the correlations.
(b) Calculate the Ljung-Box statistic summing to K = 9. Does this statistic sup-

port the AR(3) specification?
(c) Perform a runs test on the residuals and comment on the results.
(d) Display the quantile-quantile normal plot of the residuals. Comment on the

plot.
(e) Perform the Shapiro-Wilk test of normality on the residuals.

8.8 Consider the oil filter sales data shown in Exhibit 1.8 on page 7. The data are in
the file named oilfilters.
(a) Fit an AR(1) model to this series. Is the estimate of the φ parameter signifi-

cantly different from zero statistically?
(b) Display the sample ACF of the residuals from the AR(1) fitted model. Com-

ment on the display.
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8.9 The data file named robot contains a time series obtained from an industrial robot.
The robot was put through a sequence of maneuvers, and the distance from a
desired ending point was recorded in inches. This was repeated 324 times to form
the time series. Compare the fits of an AR(1) model and an IMA(1,1) model for
these data in terms of the diagnostic tests discussed in this chapter.

8.10 The data file named deere3 contains 57 consecutive values from a complex
machine tool at Deere & Co. The values given are deviations from a target value
in units of ten millionths of an inch. The process employs a control mechanism
that resets some of the parameters of the machine tool depending on the magni-
tude of deviation from target of the last item produced. Diagnose the fit of an
AR(1) model for these data in terms of the tests discussed in this chapter.

8.11 Exhibit 6.31 on page 139, suggested specifying either an AR(1) or possibly an
AR(4) model for the difference of the logarithms of the oil price series. (The file-
name is oil.price).
(a) Estimate both of these models using maximum likelihood and compare the

results using the diagnostic tests considered in this chapter.
(b) Exhibit 6.32 on page 140, suggested specifying an MA(1) model for the dif-

ference of the logs. Estimate this model by maximum likelihood and perform
the diagnostic tests considered in this chapter.

(c) Which of the three models AR(1), AR(4), or MA(1) would you prefer given
the results of parts (a) and (b)?


