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CHAPTER 7

PARAMETER ESTIMATION

This chapter deals with the problem of estimating the parameters of an ARIMA model
based on the observed time series Y1, Y2,…, Yn. We assume that a model has already
been specified; that is, we have specified values for p, d, and q using the methods of
Chapter 6. With regard to nonstationarity, since the d th difference of the observed series
is assumed to be a stationary ARMA(p,q) process, we need only concern ourselves with
the problem of estimating the parameters in such stationary models. In practice, then we
treat the dth difference of the original time series as the time series from which we esti-
mate the parameters of the complete model. For simplicity, we shall let Y1, Y2,…, Yn
denote our observed stationary process even though it may be an appropriate difference
of the original series. We first discuss the method-of-moments estimators, then the least
squares estimators, and finally full maximum likelihood estimators.

7.1 The Method of Moments

The method of moments is frequently one of the easiest, if not the most efficient, meth-
ods for obtaining parameter estimates. The method consists of equating sample
moments to corresponding theoretical moments and solving the resulting equations to
obtain estimates of any unknown parameters. The simplest example of the method is to
estimate a stationary process mean by a sample mean. The properties of this estimator
were studied extensively in Chapter 3.

Autoregressive Models

Consider first the AR(1) case. For this process, we have the simple relationship ρ1 = φ.
In the method of moments, ρ1 is equated to r1, the lag 1 sample autocorrelation. Thus
we can estimate φ by

(7.1.1)

Now consider the AR(2) case. The relationships between the parameters φ1 and φ2
and various moments are given by the Yule-Walker equations (4.3.13) on page 72:

The method of moments replaces ρ1 by r1 and ρ2 by r2 to obtain

φ̂ r1=

ρ1 φ1 ρ1φ2  and  ρ2+ ρ1φ1 φ2+= =

r1 φ1 r1φ2  and  r2+ r1φ1 φ2+= =



150 Parameter Estimation

which are then solved to obtain

(7.1.2)

The general AR(p) case proceeds similarly. Replace ρk by rk throughout the
Yule-Walker equations on page 79 (or page 114) to obtain

(7.1.3)

These linear equations are then solved for . The Durbin-Levinson recur-
sion of Equation (6.2.9) on page 115 provides a convenient method of solution but is
subject to substantial round-off errors if the solution is close to the boundary of the sta-
tionarity region. The estimates obtained in this way are also called Yule-Walker esti-
mates.

Moving Average Models

Surprisingly, the method of moments is not nearly as convenient when applied to mov-
ing average models. Consider the simple MA(1) case. From Equations (4.2.2) on
page 57, we know that

Equating ρ1 to r1, we are led to solve a quadratic equation in θ. If |r1| < 0.5, then the two
real roots are given by

As can be easily checked, the product of the two solutions is always equal to 1; there-
fore, only one of the solutions satisfies the invertibility condition |θ| < 1. 

After further algebraic manipulation, we see that the invertible solution can be writ-
ten as

(7.1.4)

If r1 = ±0.5, unique, real solutions exist, namely , but neither is invertible. If |r1| > 0.5
(which is certainly possible even though |ρ1| < 0.5), no real solutions exist, and so the
method of moments fails to yield an estimator of θ. Of course, if |r1| > 0.5, the specifica-
tion of an MA(1) model would be in considerable doubt.
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For higher-order MA models, the method of moments quickly gets complicated.
We can use Equations (4.2.5) on page 65 and replace ρk by rk for k = 1, 2,…, q, to
obtain q equations in q unknowns θ1, θ2,..., θq. The resulting equations are highly non-
linear in the θ’s, however, and their solution would of necessity be numerical. In addi-
tion, there will be multiple solutions, of which only one is invertible. We shall not
pursue this further since we shall see in Section 7.4 that, for MA models, the method of
moments generally produces poor estimates.

Mixed Models

We consider only the ARMA(1,1) case. Recall Equation (4.4.5) on page 78, 

Noting that ρ2 /ρ1 = φ, we can first estimate φ as

(7.1.5)

Having done so, we can then use

(7.1.6)

to solve for . Note again that a quadratic equation must be solved and only the invert-
ible solution, if any, retained.

Estimates of the Noise Variance

The final parameter to be estimated is the noise variance, . In all cases, we can first
estimate the process variance, γ0 = Var(Yt), by the sample variance

(7.1.7)

and use known relationships from Chapter 4 among γ0, , and the θ’s and φ’s to esti-
mate .

For the AR(p) models, Equation (4.3.31) on page 77 yields

(7.1.8)

In particular, for an AR(1) process,

since .
For the MA(q) case, we have, using Equation (4.2.4) on page 65,

(7.1.9)
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For the ARMA(1,1) process, Equation (4.4.4) on page 78 yields

(7.1.10)

Numerical Examples

The table in Exhibit 7.1 displays method-of-moments estimates for the parameters from
several simulated time series. Generally speaking, the estimates for all the autoregres-
sive models are fairly good but the estimates for the moving average models are not
acceptable. It can be shown that theory confirms this observation—method-of-moments
estimators are very inefficient for models containing moving average terms.

Exhibit 7.1 Method-of-Moments Parameter Estimates for Simulated 
Series

> data(ma1.2.s); data(ma1.1.s); data(ma1.3.s); data(ma1.4.s)
> estimate.ma1.mom(ma1.2.s); estimate.ma1.mom(ma1.1.s)
> estimate.ma1.mom(ma1.3.s); estimate.ma1.mom(ma1.4.s)
> arima(ma1.4.s,order=c(0,0,1),method='CSS',include.mean=F)
> data(ar1.s); data(ar1.2.s)
> ar(ar1.s,order.max=1,AIC=F,method='yw')
> ar(ar1.2.s,order.max=1,AIC=F,method='yw')
> data(ar2.s)
> ar(ar2.s,order.max=2,AIC=F,method='yw')

Consider now some actual time series. We start with the Canadian hare abundance
series. Since we found in Exhibit 6.27 on page 136 that a square root transformation was
appropriate here, we base all modeling on the square root of the original abundance
numbers. We illustrate the estimation of an AR(2) model with the hare data, even

True Parameters
Method-of-Moments 

Estimates

Model θ φ1 φ2 θ φ1 φ2 n

MA(1) −0.9 −0.554 120

MA(1) 0.9 0.719 120

MA(1) −0.9 NA†

† No method-of-moments estimate exists since r1 = 0.544 for this simulation.

60

MA(1) 0.5 −0.314 60

AR(1) 0.9 0.831 60

AR(1) 0.4 0.470 60

AR(2) 1.5 −0.75 1.472 −0.767 120

σ̂e
2 1 φ̂2–

1 2φ̂θ̂– θ̂2+
------------------------------s2=
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though we shall show later that an AR(3) model provides a better fit to the data. The first
two sample autocorrelations displayed in Exhibit 6.28 on page 137 are r1 = 0.736 and r2
= 0.304. Using Equations (7.1.2), the method-of-moments estimates of φ1 and φ2 are

(7.1.11)

and

(7.1.12)

The sample mean and variance of this series (after taking the square root) are found to
be 5.82 and 5.88, respectively. Then, using Equation (7.1.8), we estimate the noise vari-
ance as

(7.1.13)

The estimated model (in original terms) is then

(7.1.14)

or

(7.1.15)

with estimated noise variance of 1.97.
Consider now the oil price series. Exhibit 6.32 on page 140 suggested that we spec-

ify an MA(1) model for the first differences of the logarithms of the series. The lag 1
sample autocorrelation in that exhibit is 0.212, so the method-of-moments estimate of θ
is

(7.1.16)

The mean of the differences of the logs is 0.004 and the variance is 0.0072. The esti-
mated model is

(7.1.17)

or
(7.1.18)

with estimated noise variance of 

(7.1.19)
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Using Equation (3.2.3) on page 28 with estimated parameters yields a standard error of
the sample mean of 0.0060. Thus, the observed sample mean of 0.004 is not signifi-
cantly different from zero and we would remove the constant term from the model, giv-
ing a final model of

(7.1.20)

7.2 Least Squares Estimation

Because the method of moments is unsatisfactory for many models, we must consider
other methods of estimation. We begin with least squares. For autoregressive models,
the ideas are quite straightforward. At this point, we introduce a possibly nonzero mean,
μ, into our stationary models and treat it as another parameter to be estimated by least
squares.

Autoregressive Models

Consider the first-order case where

(7.2.1)

We can view this as a regression model with predictor variable Yt − 1 and response vari-
able Yt. Least squares estimation then proceeds by minimizing the sum of squares of the
differences

Since only Y1, Y2,…, Yn are observed, we can only sum from t = 2 to t = n. Let

(7.2.2)

This is usually called the conditional sum-of-squares function. (The reason for the
term conditional will become apparent later on.) According to the principle of least
squares, we estimate φ and μ by the respective values that minimize Sc(φ,μ) given the
observed values of Y1, Y2,…, Yn.

Consider the equation . We have

or, simplifying and solving for μ,

(7.2.3)
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Now, for large n,

Thus, regardless of the value of φ, Equation (7.2.3) reduces to

(7.2.4)

We sometimes say, except for end effects, .
Consider now the minimization of with respect to φ. We have

Setting this equal to zero and solving for φ yields

Except for one term missing in the denominator, namely , this is the same as
r1. The lone missing term is negligible for stationary processes, and thus the least
squares and method-of-moments estimators are nearly identical, especially for large
samples.

For the general AR(p) process, the methods used to obtain Equations (7.2.3) and
(7.2.4) can easily be extended to yield the same result, namely

(7.2.5)

To generalize the estimation of the φ’s, we consider the second-order model. In accor-
dance with Equation (7.2.5), we replace μ by  in the conditional sum-of-squares func-
tion, so

(7.2.6)

Setting , we have
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(7.2.8)

The sum of the lagged products is very nearly the numerator of

r1— we are missing one product, . A similar situation exists for

, but here we are missing . If we divide

both sides of Equation (7.2.8) by , then, except for end effects, which are

negligible under the stationarity assumption, we obtain

(7.2.9)

Approximating in a similar way with the equation leads to

(7.2.10)

But Equations (7.2.9) and (7.2.10) are just the sample Yule-Walker equations for an
AR(2) model.

Entirely analogous results follow for the general stationary AR(p) case: To an
excellent approximation, the conditional least squares estimates of the φ’s are obtained
by solving the sample Yule-Walker equations (7.1.3).†

Moving Average Models

Consider now the least-squares estimation of θ in the MA(1) model:

(7.2.11)

At first glance, it is not apparent how a least squares or regression method can be
applied to such models. However, recall from Equation (4.4.2) on page 77 that invert-
ible MA(1) models can be expressed as

an autoregressive model but of infinite order. Thus least squares can be meaningfully
carried out by choosing a value of θ that minimizes

† We note that Lai and Wei (1983) established that the conditional least squares estimators
are consistent even for nonstationary autoregressive models where the Yule-Walker equa-
tions do not apply.
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(7.2.12)

where, implicitly, et = et(θ) is a function of the observed series and the unknown param-
eter θ.

It is clear from Equation (7.2.12) that the least squares problem is nonlinear in the
parameters. We will not be able to minimize Sc(θ) by taking a derivative with respect to
θ, setting it to zero, and solving. Thus, even for the simple MA(1) model, we must resort
to techniques of numerical optimization. Other problems exist in this case: We have not
shown explicit limits on the summation in Equation (7.2.12) nor have we said how to
deal with the infinite series under the summation sign.

To address these issues, consider evaluating Sc(θ) for a single given value of θ. The
only Y’s we have available are our observed series, Y1, Y2,…, Yn. Rewrite Equation
(7.2.11) as

(7.2.13)

Using this equation, e1, e2,…, en can be calculated recursively if we have the initial
value e0. A common approximation is to set e0 = 0—its expected value. Then, condi-
tional on e0 = 0, we can obtain

(7.2.14)

and thus calculate , conditional on e0 = 0, for that single given value of
θ.

For the simple case of one parameter, we could carry out a grid search over the
invertible range (−1,+1) for θ to find the minimum sum of squares. For more general
MA(q) models, a numerical optimization algorithm, such as Gauss-Newton or Nelder-
Mead, will be needed. 

For higher-order moving average models, the ideas are analogous and no new diffi-
culties arise. We compute et = et(θ1, θ2,…, θq) recursively from

(7.2.15)

with e0 = e−1 = = e− q = 0. The sum of squares is minimized jointly in θ1, θ2,…, θq
using a multivariate numerical method.

Mixed Models

Consider the ARMA(1,1) case

(7.2.16)
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As in the pure MA case, we consider et = et(φ,θ) and wish to minimize  .
We can rewrite Equation (7.2.16) as

(7.2.17)

To obtain e1, we now have an additional “startup” problem, namely Y0. One approach is
to set Y0 = 0 or to  if our model contains a nonzero mean. However, a better approach
is to begin the recursion at t = 2, thus avoiding Y0 altogether, and simply minimize

For the general ARMA(p,q) model, we compute

(7.2.18)

with ep = ep − 1 = = ep + 1 − q = 0 and then minimize Sc(φ1,φ2,…,φp,θ1,θ2,…,θq)
numerically to obtain the conditional least squares estimates of all the parameters.

For parameter sets θ1, θ2,…, θq corresponding to invertible models, the start-up val-
ues ep, ep − 1,…, ep + 1 − q will have very little influence on the final estimates of the
parameters for large samples.

7.3 Maximum Likelihood and Unconditional Least Squares

For series of moderate length and also for stochastic seasonal models to be discussed in
Chapter 10, the start-up values ep = ep − 1 = = ep + 1 − q = 0 will have a more pro-
nounced effect on the final estimates for the parameters. Thus we are led to consider the
more difficult problem of maximum likelihood estimation.

The advantage of the method of maximum likelihood is that all of the information
in the data is used rather than just the first and second moments, as is the case with least
squares. Another advantage is that many large-sample results are known under very
general conditions. One disadvantage is that we must for the first time work specifically
with the joint probability density function of the process.

Maximum Likelihood Estimation

For any set of observations, Y1, Y2,…, Yn, time series or not, the likelihood function L is
defined to be the joint probability density of obtaining the data actually observed. How-
ever, it is considered as a function of the unknown parameters in the model with the
observed data held fixed. For ARIMA models, L will be a function of the φ’s, θ’s, μ, and

 given the observations Y1, Y2,…, Yn. The maximum likelihood estimators are then
defined as those values of the parameters for which the data actually observed are most
likely, that is, the values that maximize the likelihood function.

We begin by looking in detail at the AR(1) model. The most common assumption is
that the white noise terms are independent, normally distributed random variables with
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zero means and common standard deviation . The probability density function (pdf)
of each et is then

and, by independence, the joint pdf for e2, e3,…, en is

(7.3.1)

Now consider

(7.3.2)

If we condition on Y1 = y1, Equation (7.3.2) defines a linear transformation between e2,
e3,…, en and Y2, Y3,…, Yn (with Jacobian equal to 1). Thus the joint pdf of Y2, Y3,…, Yn
given Y1 = y1 can be obtained by using Equation (7.3.2) to substitute for the e’s in terms
of the Y’s in Equation (7.3.1). Thus we get

(7.3.3)

Now consider the (marginal) distribution of Y1. It follows from the linear process repre-
sentation of the AR(1) process (Equation (4.3.8) on page 70) that Y1 will have a normal
distribution with mean μ and variance . Multiplying the conditional pdf in
Equation (7.3.3) by the marginal pdf of Y1 gives us the joint pdf of Y1, Y2,…, Yn that we
require. Interpreted as a function of the parameters φ, μ, and , the likelihood function
for an AR(1) model is given by
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work with than the likelihood itself. For the AR(1) case, the log-likelihood function,
denoted , is given by

(7.3.6)

For given values of φ and μ,  can be maximized analytically with respect
to  in terms of the yet-to-be-determined estimators of φ and μ. We obtain

(7.3.7)

As in many other similar contexts, we usually divide by n − 2 rather than n (since we are
estimating two parameters, φ and μ) to obtain an estimator with less bias. For typical
time series sample sizes, there will be very little difference.

Consider now the estimation of φ and μ. A comparison of the unconditional
sum-of-squares function S(φ,μ) with the earlier conditional sum-of-squares function
Sc(φ,μ) of Equation (7.2.2) on page 154, reveals one simple difference:

(7.3.8)

Since Sc(φ,μ) involves a sum of n − 1 components, whereas  does not
involve n, we shall have . Thus the values of φ and μ that minimize
S(φ,μ) or Sc(φ,μ) should be very similar, at least for larger sample sizes. The effect of
the rightmost term in Equation (7.3.8) will be more substantial when the minimum for φ
occurs near the stationarity boundary of ±1.

Unconditional Least Squares

As a compromise between conditional least squares estimates and full maximum likeli-
hood estimates, we might consider obtaining unconditional least squares estimates; that
is, estimates minimizing S(φ,μ). Unfortunately, the term  causes the
equations  and to be nonlinear in φ and μ, and reparameteriza-
tion to a constant term θ0 = μ(1 − φ) does not improve the situation substantially. Thus
minimization must be carried out numerically. The resulting estimates are called uncon-
ditional least squares estimates.

The derivation of the likelihood function for more general ARMA models is con-
siderably more involved. One derivation may be found in Appendix H: State Space
Models on page 222. We refer the reader to Brockwell and Davis (1991) or Shumway
and Stoffer (2006) for even more details.

7.4 Properties of the Estimates

The large-sample properties of the maximum likelihood and least squares (conditional
or unconditional) estimators are identical and can be obtained by modifying standard
maximum likelihood theory. Details can be found in Shumway and Stoffer (2006, pp.
125–129). We shall look at the results and their implications for simple ARMA models.

l φ μ σe
2, ,( )

l φ μ σe
2, ,( ) n

2
--- 2π( )log– n

2
--- σe

2( )log– 1
2
--- 1 φ2–( )log 1

2σe
2

---------S φ μ,( )–+=

l φ μ σe
2, ,( )

σe
2

σ̂e
2 S φ̂ μ̂,( )

n
-----------------=

S φ μ,( ) Sc φ μ,( ) 1 φ2–( ) Y1 μ–( )2+=

1 φ2–( ) Y1 μ–( )2

S φ μ,( ) Sc φ μ,( )≈

1 φ2–( ) Y1 μ–( )2

S∂ φ∂⁄ 0= S∂ μ∂⁄ 0=
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For large n, the estimators are approximately unbiased and normally distributed.
The variances and correlations are as follows:

AR(1): (7.4.9)

AR(2): (7.4.10)

MA(1): (7.4.11)

MA(2): (7.4.12)

ARMA(1,1): (7.4.13)

Notice that, in the AR(1) case, the variance of the estimator of φ decreases as φ
approaches ±1. Also notice that even though an AR(1) model is a special case of an
AR(2) model, the variance of shown in Equations (7.4.10) shows that our estimation
of φ1 will generally suffer if we erroneously fit an AR(2) model when, in fact, φ2 = 0.
Similar comments could be made about fitting an MA(2) model when an MA(1) would
suffice or fitting an ARMA(1,1) when an AR(1) or an MA(1) is adequate.

For the ARMA(1,1) case, note the denominator of φ − θ in the variances in Equa-
tions (7.4.13). If φ and θ are nearly equal, the variability in the estimators of φ and θ can
be extremely large.

Note that in all of the two-parameter models, the estimates can be highly correlated,
even for very large sample sizes.

The table shown in Exhibit 7.2 gives numerical values for the large-sample approx-
imate standard deviations of the estimates of φ in an AR(1) model for several values of
φ and several sample sizes. Since the values in the table are equal to , they
apply equally well to standard deviations computed according to Equations (7.4.10),

Var φ̂( ) 1 φ2–
n

--------------≈

Var φ̂1( ) Var φ̂2( )
1 φ2

2–

n
---------------≈ ≈

Corr φ̂1 φ̂2,( )
φ1

1 φ2–
--------------–≈ ρ1–=

⎩
⎪
⎪
⎨
⎪
⎪
⎧

Var θ̂( ) 1 θ2–
n

--------------≈

Var θ̂1( ) Var θ̂2( )
1 θ2

2–

n
---------------≈ ≈

Corr θ̂1 θ̂2,( )
θ1

1 θ2–
--------------–≈

⎩
⎪
⎪
⎨
⎪
⎪
⎧

Var φ̂( ) 1 φ2–
n

-------------- 1 φθ–
φ θ–

---------------
2

≈

Var θ̂( ) 1 θ2–
n
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φ θ–

---------------
2

≈

Corr φ̂ θ̂,( ) 1 φ2–( ) 1 θ2–( )
1 φθ–

-------------------------------------------≈
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⎪
⎪
⎪
⎪
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⎪
⎪
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(7.4.11), and (7.4.12). 
Thus, in estimating an AR(1) model with, for example, n = 100 and φ = 0.7, we can

be about 95% confident that our estimate of φ is in error by no more than ±2(0.07) =
±0.14.

Exhibit 7.2 AR(1) Model Large-Sample Standard Deviations of 

For stationary autoregressive models, the method of moments yields estimators
equivalent to least squares and maximum likelihood, at least for large samples. For mod-
els containing moving average terms, such is not the case. For an MA(1) model, it can
be shown that the large-sample variance of the method-of-moments estimator of θ is
equal to

(7.4.14)

Comparing Equation (7.4.14) with that of Equation (7.4.11), we see that the variance for
the method-of-moments estimator is always larger than the variance of the maximum
likelihood estimator. The table in Exhibit 7.3 displays the ratio of the large-sample stan-
dard deviations for the two methods for several values of θ. For example, if θ is 0.5, the
method-of-moments estimator has a large-sample standard deviation that is 42% larger
than the standard deviation of the estimator obtained using maximum likelihood. It is
clear from these ratios that the method-of-moments estimator should not be used for the
MA(1) model. This same advice applies to all models that contain moving average
terms.

Exhibit 7.3 Method of Moments (MM) vs. Maximum Likelihood (MLE) in 
MA(1) Models

n
φ 50 100 200

0.4 0.13 0.09 0.06

0.7 0.10 0.07 0.05

0.9 0.06 0.04 0.03

θ SDMM/SDMLE

0.25 1.07

0.50 1.42

0.75 2.66

0.90 5.33

φ̂

Var θ̂( ) 1 θ2 4θ4 θ6 θ8+ + + +
n 1 θ2–( )2

-------------------------------------------------------≈
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7.5 Illustrations of Parameter Estimation

Consider the simulated MA(1) series with θ = −0.9. The series was displayed in Exhibit
4.2 on page 59, and we found the method-of-moments estimate of θ to be a rather poor
−0.554; see Exhibit 7.1 on page 152. In contrast, the maximum likelihood estimate is
−0.915, the unconditional sum-of-squares estimate is −0.923, and the conditional least
squares estimate is −0.879. For this series, the maximum likelihood estimate of −0.915
is closest to the true value used in the simulation. Using Equation (7.4.11) on page 161
and replacing θ by its estimate, we have a standard error of about 

so none of the maximum likelihood, conditional sum-of-squares, or unconditional
sum-of-squares estimates are significantly far from the true value of −0.9.

The second MA(1) simulation with θ = 0.9 produced the method-of-moments esti-
mate of 0.719 shown in Exhibit 7.1. The conditional sum-of-squares estimate is 0.958,
the unconditional sum-of-squares estimate is 0.983, and the maximum likelihood esti-
mate is 1.000. These all have a standard error of about 0.04 as above. Here the maxi-
mum likelihood estimate of is a little disconcerting since it corresponds to a
noninvertible model.

The third MA(1) simulation with θ = −0.9 produced a method-of-moments estimate
of −0.719 (see Exhibit 7.1). The maximum likelihood estimate here is −0.894 with a
standard error of about

For these data, the conditional sum-of-squares estimate is −0.979 and the unconditional
sum-of-squares estimate is −0.961. Of course, with a standard error of this magnitude, it
is unwise to report digits in the estimates of θ beyond the tenths place.

For our simulated autoregressive models, the results are reported in Exhibits 7.4
and 7.5.

Exhibit 7.4 Parameter Estimation for Simulated AR(1) Models

> data(ar1.s); data(ar1.2.s)
> ar(ar1.s,order.max=1,AIC=F,method='yw')
> ar(ar1.s,order.max=1,AIC=F,method='ols')
> ar(ar1.s,order.max=1,AIC=F,method='mle')

Parameter φ

Method-of-
Moments 
Estimate

Conditional 
SS 

Estimate

Unconditional 
SS

Estimate

Maximum 
Likelihood 
Estimate n

0.9 0.831 0.857 0.911 0.892 60

0.4 0.470 0.473 0.473 0.465 60

Var̂ θ̂( )
1 θ̂2–

n
--------------≈ 1 0.91( )2–

120
--------------------------- 0.04≈=

θ̂ 1=

Var̂ θ̂( ) 1 0.894( )2–
60

------------------------------ 0.06≈ ≈



164 Parameter Estimation

> ar(ar1.2.s,order.max=1,AIC=F,method='yw')
> ar(ar1.2.s,order.max=1,AIC=F,method='ols')
> ar(ar1.2.s,order.max=1,AIC=F,method='mle')

From Equation (7.4.9) on page 161, the standard errors for the estimates are

and

respectively. Considering the magnitude of these standard errors, all four methods esti-
mate reasonably well for AR(1) models.

Exhibit 7.5 Parameter Estimation for a Simulated AR(2) Model

> data(ar2.s)
> ar(ar2.s,order.max=2,AIC=F,method='yw')
> ar(ar2.s,order.max=2,AIC=F,method='ols')
> ar(ar2.s,order.max=2,AIC=F,method='mle')

From Equation (7.4.10) on page 161, the standard errors for the estimates are

Again, considering the size of the standard errors, all four methods estimate reasonably
well for AR(2) models.

As a final example using simulated data, consider the ARMA(1,1) shown in Exhibit
6.14 on page 123. Here φ = 0.6, θ = −0.3, and n = 100. Estimates using the various
methods are shown in Exhibit 7.6.

Parameters

Method-of-
Moments 
Estimates

Conditional 
SS 

Estimates

Unconditional 
SS

Estimates

Maximum 
Likelihood 
Estimate n

φ1 = 1.5 1.472 1.5137 1.5183 1.5061 120

φ2 = −0.75 −0.767 −0.8050 −0.8093 −0.7965 120

Var̂ φ̂( ) 1 φ̂2–
n

--------------≈ 1 0.831( )2–
60

------------------------------ 0.07≈=

Var̂ φ̂( ) 1 0.470( )2–
60

------------------------------ 0.11≈=

Var̂ φ̂1( ) Var̂ φ̂2( )
1 φ2

2–

n
---------------≈ ≈ 1 0.75( )2–

120
--------------------------- 0.06≈=



7.5  Illustrations of Parameter Estimation 165

Exhibit 7.6 Parameter Estimation for a Simulated ARMA(1,1) Model

> data(arma11.s)
> arima(arma11.s, order=c(1,0,1),method='CSS')
> arima(arma11.s, order=c(1,0,1),method='ML')

Now let’s look at some real time series. The industrial chemical property time series
was first shown in Exhibit 1.3 on page 3. The sample PACF displayed in Exhibit 6.26
on page 135, strongly suggested an AR(1) model for this series. Exhibit 7.7 shows the
various estimates of the φ parameter using four different methods of estimation.

Exhibit 7.7 Parameter Estimation for the Color Property Series

> data(color)
> ar(color,order.max=1,AIC=F,method='yw')
> ar(color,order.max=1,AIC=F,method='ols')
> ar(color,order.max=1,AIC=F,method='mle')

Here the standard error of the estimates is about

so all of the estimates are comparable.
As a second example, consider again the Canadian hare abundance series. As

before, we base all modeling on the square root of the original abundance numbers.
Based on the partial autocorrelation function shown in Exhibit 6.29 on page 137, we
will estimate an AR(3) model. For this illustration, we use maximum likelihood estima-
tion and show the results obtained from the R software in Exhibit 7.8.

Parameters

Method-of-
Moments 
Estimates

Conditional 
SS 

Estimates

Unconditional 
SS

Estimates

Maximum 
Likelihood 
Estimate n

φ = 0.6 0.637 0.5586 0.5691 0.5647 100

θ = −0.3 −0.2066 −0.3669 −0.3618 −0.3557 100

Parameter

Method-of-
Moments 
Estimate

Conditional 
SS 

Estimate

Unconditional 
SS

Estimate

Maximum 
Likelihood 
Estimate n

φ 0.5282 0.5549 0.5890 0.5703 35

Var̂ φ̂( ) 1 0.57( )2–
35

--------------------------- 0.14≈ ≈
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Exhibit 7.8 Maximum Likelihood Estimates from R Software: Hare 
Series

> data(hare)
> arima(sqrt(hare),order=c(3,0,0))

Here we see that = 1.0519, = −0.2292, and = −0.3930. We also see that the
estimated noise variance is = 1.066. Noting the standard errors, the estimates of the
lag 1 and lag 3 autoregressive coefficients are significantly different from zero, as is the
intercept term, but the lag 2 autoregressive parameter estimate is not significant.

The estimated model would be written

or

where Yt is the hare abundance in year t in original terms. Since the lag 2 autoregressive
term is insignificant, we might drop that term (that is, set φ2 = 0) and obtain new esti-
mates of φ1 and φ3 with this subset model.

As a last example, we return to the oil price series. The sample ACF shown in
Exhibit 6.32 on page 140, suggested an MA(1) model on the differences of the logs of
the prices. Exhibit 7.9 gives the estimates of θ by the various methods and, as we have
seen earlier, the method-of-moments estimate differs quite a bit from the others. The
others are nearly equal given their standard errors of about 0.07.

Exhibit 7.9 Estimation for the Difference of Logs of the Oil Price Series

> data(oil.price)
> arima(log(oil.price),order=c(0,1,1),method='CSS')
> arima(log(oil.price),order=c(0,1,1),method='ML')

Coefficients: ar1 ar2 ar3 Intercept†

† The intercept here is the estimate of the process mean μ—not of θ0.

1.0519 −0.2292 −0.3931 5.6923

s.e. 0.1877 0.2942 0.1915 0.3371

sigma^2 estimated as 1.066: log-likelihood = -46.54, AIC = 101.08

Parameter

Method-of-
Moments 
Estimate

Conditional 
SS 

Estimate

Unconditional 
SS

Estimate

Maximum 
Likelihood 
Estimate n

θ −0.2225 −0.2731 −0.2954 −0.2956 241

φ̂1 φ̂2 φ̂3
σ̂e2

Yt 5.6923– 1.0519 Yt 1– 5.6923–( ) 0.2292 Yt 2– 5.6923–( )–=

0.3930 Yt 3– 5.6923–( )– et+

Yt 3.25 1.0519 Yt 1– 0.2292 Yt 2–– 0.3930 Yt 3–– et+ +=
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7.6 Bootstrapping ARIMA Models

In Section 7.4, we summarized some approximate normal distribution results for the
estimator , where γ is the vector consisting of all the ARMA parameters. These normal
approximations are accurate for large samples, and statistical software generally uses
those results in calculating and reporting standard errors. The standard error of some
complex function of the model parameters, for example the quasi-period of the model, if
it exists, is then usually obtained by the delta method. However, the general theory pro-
vides no practical guidance on how large the sample size should be for the normal
approximation to be reliable. Bootstrap methods (Efron and Tibshirani, 1993; Davison
and Hinkley, 2003) provide an alternative approach to assessing the uncertainty of an
estimator and may be more accurate for small samples. There are several variants of the
bootstrap method for dependent data—see Politis (2003). We shall confine our discus-
sion to the parametric bootstrap that generates the bootstrap time series , 
by simulation from the fitted ARIMA(p,d,q) model. (The bootstrap may be done by fix-
ing the first p + d initial values of Y* to those of the observed data. For stationary mod-
els, an alternative procedure is to simulate stationary realizations from the fitted model,
which can be done approximately by simulating a long time series from the fitted model
and then deleting the transient initial segment of the simulated data—the so-called
burn-in.) If the errors are assumed to be normally distributed, the errors may be drawn
randomly and with replacement from . For the case of an unknown error distri-
bution, the errors can be drawn randomly and with replacement from the residuals of the
fitted model. For each bootstrap series, let be the estimator computed based on the
bootstrap time series data using the method of full maximum likelihood estimation
assuming stationarity. (Other estimation methods may be used.) The bootstrap is repli-
cated, say, B times. (For example, B = 1000.) From the B bootstrap parameter estimates,
we can form an empirical distribution and use it to calibrate the uncertainty in . Sup-
pose we are interested in estimating some function of γ, say h(γ)—for example, the
AR(1) coefficient. Using the percentile method, a 95% bootstrap confidence interval for
h(γ) can be obtained as the interval from the 2.5 percentile to the 97.5 percentile of the
bootstrap distribution of . 

We illustrate the bootstrap method with the hare data. The bootstrap 95% confi-
dence intervals reported in the first row of the table in Exhibit 7.10 are based on the
bootstrap obtained by conditioning on the initial three observations and assuming nor-
mal errors. Those in the second row are obtained using the same method except that the
errors are drawn from the residuals. The third and fourth rows report the confidence
intervals based on the stationary bootstrap with a normal error distribution for the third
row and the empirical residual distribution for the fourth row. The fifth row in the table
shows the theoretical 95% confidence intervals based on the large-sample distribution
results for the estimators. In particular, the bootstrap time series for the first bootstrap
method is generated recursively using the equation

(7.6.1)

γ̂

Y1
* Y2

* … Yn
*, ,

N 0 σ̂e2,( )

γ̂ *

γ̂

h γ̂*( )

Yt
* φ̂1Yt 1–

* φ̂2Yt 2–
* φ̂3Yt 3–

*––– θ̂0 et
*+=
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for t = 4, 5,…, 31, where the  are chosen independently from , ,
, ; and the parameters are set to be the estimates from the AR(3)

model fitted to the (square root transformed) hare data with .
All results are based on about 1000 bootstrap replications, but full maximum likelihood
estimation fails for 6.3%, 6.3%, 3.8%, and 4.8% of 1000 cases for the four bootstrap
methods I, II, III, and IV, respectively.

Exhibit 7.10 Bootstrap and Theoretical Confidence Intervals for the AR(3) 
Model Fitted to the Hare Data

> See the Chapter 7 R scripts file for the extensive code 
required to generate these results.

All four methods yield similar bootstrap confidence intervals, although the condi-
tional bootstrap approach generally yields slightly narrower confidence intervals. This is
expected, as the conditional bootstrap time series bear more resemblance to each other
because all are subject to identical initial conditions. The bootstrap confidence intervals
are generally slightly wider than their theoretical counterparts that are derived from the
large-sample results. Overall, we can draw the inference that the φ2 coefficient estimate
is insignificant, whereas both the φ1 and φ3 coefficient estimates are significant at the
5% significance level. 

The bootstrap method has the advantage of allowing easy construction of confi-
dence intervals for a model characteristic that is a nonlinear function of the model
parameters. For example, the characteristic AR polynomial of the fitted AR(3) model
for the hare data admits a pair of complex roots. Indeed, the roots are 0.84 ± 0.647i and
−2.26, where . The two complex roots can be written in polar form: 1.06exp(±
0.657i). As in the discussion of the quasi-period for the AR(2) model on page 74, the
quasi-period of the fitted AR(3) model can be defined as 2π/0.657 = 9.57. Thus, the fit-
ted model suggests that the hare abundance underwent cyclical fluctuation with a period
of about 9.57 years. The interesting question of constructing a 95% confidence interval
for the quasi-period could be studied using the delta method. However, this will be quite
complex, as the quasi-period is a complicated function of the parameters. But the boot-
strap provides a simple solution: For each set of bootstrap parameter estimates, we can
compute the quasi-period and hence obtain the bootstrap distribution of the
quasi-period. Confidence intervals for the quasi-period can then be constructed using
the percentile method, and the shape of the distribution can be explored via the histo-
gram of the bootstrap quasi-period estimates. (Note that the quasi-period will be unde-

Method ar1 ar2 ar3 intercept noise var. 

I (0.593, 1.269) (−0.655, 0.237) (−0.666, −0.018) (5.115, 6.394) (0.551, 1.546) 

II (0.612, 1.296) (−0.702, 0.243) (−0.669, −0.026) (5.004, 6.324) (0.510, 1.510) 

III (0.699, 1.369) (−0.746, 0.195) (−0.666, −0.021) (5.056, 6.379) (0.499, 1.515) 

IV (0.674, 1.389) (−0.769, 0.194) (−0.665, −0.002) (4.995, 6.312) (0.477, 1.530) 

Theoretical (0.684, 1.42) (−0.8058, 0.3474) (−0.7684,−0.01776) (5.032, 6.353) (0.536, 1.597) 

et
* N 0 σ̂e2,( ) Y1

* Y1=
Y2

* Y2= Y3
* Y3=

θ̂0 μ̂ 1 φ̂1 φ̂2 φ̂3–––( )=

i 1–=
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fined whenever the roots of the AR characteristic equation are all real numbers.) Among
the 1000 stationary bootstrap time series obtained by simulating from the fitted model
with the errors drawn randomly from the residuals with replacement, 952 series lead to
successful full maximum likelihood estimation. All but one of the 952 series have
well-defined quasi-periods, and the histogram of these is shown in Exhibit 7.11. The
histogram shows that the sampling distribution of the quasi-period estimate is slightly
skewed to the right.† The Q-Q normal plot (Exhibit 7.12) suggests that the quasi-period
estimator has, furthermore, a thick-tailed distribution. Thus, the delta method and the
corresponding normal distribution approximation may be inappropriate for approximat-
ing the sampling distribution of the quasi-period estimator. Finally, using the percentile
method, a 95% confidence interval of the quasi-period is found to be (7.84,11.34).

Exhibit 7.11 Histogram of Bootstrap Quasi-period Estimates

> win.graph(width=3.9,height=3.8,pointsize=8)
> hist(period.replace,prob=T,xlab='Quasi-period',axes=F, 

xlim=c(5,16))
> axis(2); axis(1,c(4,6,8,10,12,14,16),c(4,6,8,10,12,14,NA))

† However, see the discussion below Equation (13.5.9) on page 338 where it is argued that,
from the perspective of frequency domain, there is a small parametric region correspond-
ing to complex roots and yet the associated quasi-period may not be physically meaning-
ful. This illustrates the subtlety of the concept of quasi-period.
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Exhibit 7.12 Q-Q Normal Plot of Bootstrap Quasi-period Estimates

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(period.replace); qqline(period.replace)

7.7 Summary

This chapter delved into the estimation of the parameters of ARIMA models. We con-
sidered estimation criteria based on the method of moments, various types of least
squares, and maximizing the likelihood function. The properties of the various estima-
tors were given, and the estimators were illustrated both with simulated and actual time
series data. Bootstrapping with ARIMA models was also discussed and illustrated.

EXERCISES

7.1 From a series of length 100, we have computed r1 = 0.8, r2 = 0.5, r3 = 0.4, = 2,
and a sample variance of 5. If we assume that an AR(2) model with a constant
term is appropriate, how can we get (simple) estimates of φ1, φ2, θ0, and ?

7.2 Assuming that the following data arise from a stationary process, calculate
method-of-moments estimates of μ, γ0, and ρ1: 6, 5, 4, 6, 4.

7.3 If {Yt} satisfies an AR(1) model with φ of about 0.7, how long of a series do we
need to estimate φ = ρ1 with 95% confidence that our estimation error is no more
than ±0.1?

7.4 Consider an MA(1) process for which it is known that the process mean is zero.
Based on a series of length n = 3, we observe Y1 = 0, Y2 = −1, and Y3 = ½.
(a) Show that the conditional least-squares estimate of θ is ½.
(b) Find an estimate of the noise variance. (Hint: Iterative methods are not needed

in this simple case.)
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Exercises 171

7.5 Given the data Y1 = 10, Y2 = 9, and Y3 = 9.5, we wish to fit an IMA(1,1) model
without a constant term.
(a) Find the conditional least squares estimate of θ. (Hint: Do Exercise 7.4 first.)
(b) Estimate .

7.6 Consider two different parameterizations of the AR(1) process with nonzero
mean:

Model I. Yt − μ = φ(Yt−1 − μ) + et.

Model II. Yt = φYt−1 + θ0 + et.

We want to estimate φ and μ or φ and θ0 using conditional least squares conditional
on Y1. Show that with Model I we are led to solve nonlinear equations to obtain the
estimates, while with Model II we need only solve linear equations.

7.7 Verify Equation (7.1.4) on page 150.
7.8 Consider an ARMA(1,1) model with φ = 0.5 and θ = 0.45.

(a) For n = 48, evaluate the variances and correlation of the maximum likelihood
estimators of φ and θ using Equations (7.4.13) on page 161. Comment on the
results.

(b) Repeat part (a) but now with n = 120. Comment on the new results.
7.9 Simulate an MA(1) series with θ = 0.8 and n = 48.

(a) Find the method-of-moments estimate of θ.
(b) Find the conditional least squares estimate of θ and compare it with part (a).
(c) Find the maximum likelihood estimate of θ and compare it with parts (a) and

(b).
(d) Repeat parts (a), (b), and (c) with a new simulated series using the same

parameters and same sample size. Compare your results with your results
from the first simulation.

7.10 Simulate an MA(1) series with θ = −0.6 and n = 36.
(a) Find the method-of-moments estimate of θ.
(b) Find the conditional least squares estimate of θ and compare it with part (a).
(c) Find the maximum likelihood estimate of θ and compare it with parts (a) and

(b).
(d) Repeat parts (a), (b), and (c) with a new simulated series using the same

parameters and same sample size. Compare your results with your results
from the first simulation.

7.11 Simulate an MA(1) series with θ = −0.6 and n = 48.
(a) Find the maximum likelihood estimate of θ.
(b) If your software permits, repeat part (a) many times with a new simulated

series using the same parameters and same sample size.
(c) Form the sampling distribution of the maximum likelihood estimates of θ.
(d) Are the estimates (approximately) unbiased?
(e) Calculate the variance of your sampling distribution and compare it with the

large-sample result in Equation (7.4.11) on page 161.
7.12 Repeat Exercise 7.11 using a sample size of n = 120.

σe2
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7.13 Simulate an AR(1) series with φ = 0.8 and n = 48.
(a) Find the method-of-moments estimate of φ.
(b) Find the conditional least squares estimate of φ and compare it with part (a).
(c) Find the maximum likelihood estimate of φ and compare it with parts (a) and

(b).
(d) Repeat parts (a), (b), and (c) with a new simulated series using the same

parameters and same sample size. Compare your results with your results
from the first simulation.

7.14 Simulate an AR(1) series with φ = −0.5 and n = 60.
(a) Find the method-of-moments estimate of φ.
(b) Find the conditional least squares estimate of φ and compare it with part (a).
(c) Find the maximum likelihood estimate of φ and compare it with parts (a) and

(b).
(d) Repeat parts (a), (b), and (c) with a new simulated series using the same

parameters and same sample size. Compare your results with your results
from the first simulation.

7.15 Simulate an AR(1) series with φ = 0.7 and n = 100.
(a) Find the maximum likelihood estimate of φ.
(b) If your software permits, repeat part (a) many times with a new simulated

series using the same parameters and same sample size.
(c) Form the sampling distribution of the maximum likelihood estimates of φ.
(d) Are the estimates (approximately) unbiased?
(e) Calculate the variance of your sampling distribution and compare it with the

large-sample result in Equation (7.4.9) on page 161.
7.16 Simulate an AR(2) series with φ1 = 0.6, φ2 = 0.3, and n = 60.

(a) Find the method-of-moments estimates of φ1 and φ2.
(b) Find the conditional least squares estimates of φ1 and φ2 and compare them

with part (a).
(c) Find the maximum likelihood estimates of φ1 and φ2 and compare them with

parts (a) and (b).
(d) Repeat parts (a), (b), and (c) with a new simulated series using the same

parameters and same sample size. Compare these results to your results from
the first simulation.

7.17 Simulate an ARMA(1,1) series with φ = 0.7, θ = 0.4, and n = 72.
(a) Find the method-of-moments estimates of φ and θ.
(b) Find the conditional least squares estimates of φ and θ and compare them with

part (a).
(c) Find the maximum likelihood estimates of φ and θ and compare them with

parts (a) and (b).
(d) Repeat parts (a), (b), and (c) with a new simulated series using the same

parameters and same sample size. Compare your new results with your results
from the first simulation.

7.18 Simulate an AR(1) series with φ = 0.6, n = 36 but with error terms from a t-distri-
bution with 3 degrees of freedom.
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(a) Display the sample PACF of the series. Is an AR(1) model suggested?
(b) Estimate φ from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.19 Simulate an MA(1) series with θ = −0.8, n = 60 but with error terms from a t-dis-

tribution with 4 degrees of freedom.
(a) Display the sample ACF of the series. Is an MA(1) model suggested?
(b) Estimate θ from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.20 Simulate an AR(2) series with φ1 = 1.0, φ2 = −0.6, n = 48 but with error terms

from a t-distribution with 5 degrees of freedom.
(a) Display the sample PACF of the series. Is an AR(2) model suggested?
(b) Estimate φ1 and φ2 from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.21 Simulate an ARMA(1,1) series with φ = 0.7, θ = −0.6, n = 48 but with error terms

from a t-distribution with 6 degrees of freedom.
(a) Display the sample EACF of the series. Is an ARMA(1,1) model suggested?
(b) Estimate φ and θ from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.22 Simulate an AR(1) series with φ = 0.6, n = 36 but with error terms from a

chi-square distribution with 6 degrees of freedom.
(a) Display the sample PACF of the series. Is an AR(1) model suggested?
(b) Estimate φ from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.23 Simulate an MA(1) series with θ = −0.8, n = 60 but with error terms from a

chi-square distribution with 7 degrees of freedom.
(a) Display the sample ACF of the series. Is an MA(1) model suggested?
(b) Estimate θ from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.24 Simulate an AR(2) series with φ1 = 1.0, φ2 = −0.6, n = 48 but with error terms

from a chi-square distribution with 8 degrees of freedom.
(a) Display the sample PACF of the series. Is an AR(2) model suggested?
(b) Estimate φ1 and φ2 from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new simulated series under the same condi-

tions.
7.25 Simulate an ARMA(1,1) series with φ = 0.7, θ = −0.6, n = 48 but with error terms

from a chi-square distribution with 9 degrees of freedom.
(a) Display the sample EACF of the series. Is an ARMA(1,1) model suggested?
(b) Estimate φ and θ from the series and comment on the results.
(c) Repeat parts (a) and (b) with a new series under the same conditions.
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7.26 Consider the AR(1) model specified for the color property time series displayed
in Exhibit 1.3 on page 3. The data are in the file named color. 
(a) Find the method-of-moments estimate of φ.
(b) Find the maximum likelihood estimate of φ and compare it with part (a).

7.27 Exhibit 6.31 on page 139 suggested specifying either an AR(1) or possibly an
AR(4) model for the difference of the logarithms of the oil price series. The data
are in the file named oil.price.
(a) Estimate both of these models using maximum likelihood and compare it with

the results using the AIC criteria.
(b) Exhibit 6.32 on page 140 suggested specifying an MA(1) model for the differ-

ence of the logs. Estimate this model by maximum likelihood and compare to
your results in part (a).

7.28 The data file named deere3 contains 57 consecutive values from a complex
machine tool at Deere & Co. The values given are deviations from a target value
in units of ten millionths of an inch. The process employs a control mechanism
that resets some of the parameters of the machine tool depending on the magni-
tude of deviation from target of the last item produced.
(a) Estimate the parameters of an AR(1) model for this series.
(b) Estimate the parameters of an AR(2) model for this series and compare the

results with those in part (a).
7.29 The data file named robot contains a time series obtained from an industrial robot.

The robot was put through a sequence of maneuvers, and the distance from a
desired ending point was recorded in inches. This was repeated 324 times to form
the time series.
(a) Estimate the parameters of an AR(1) model for these data.
(b) Estimate the parameters of an IMA(1,1) model for these data.
(c) Compare the results from parts (a) and (b) in terms of AIC.

7.30 The data file named days contains accounting data from the Winegard Co. of Bur-
lington, Iowa. The data are the number of days until Winegard receives payment
for 130 consecutive orders from a particular distributor of Winegard products.
(The name of the distributor must remain anonymous for confidentiality reasons.)
The time series contains outliers that are quite obvious in the time series plot.
(a) Replace each of the unusual values with a value of 35 days, a much more typ-

ical value, and then estimate the parameters of an MA(2) model.
(b) Now assume an MA(5) model and estimate the parameters. Compare these

results with those obtained in part (a).
7.31 Simulate a time series of length n = 48 from an AR(1) model with φ = 0.7. Use

that series as if it were real data. Now compare the theoretical asymptotic distri-
bution of the estimator of φ with the distribution of the bootstrap estimator of φ.

7.32 The industrial color property time series was fitted quite well by an AR(1) model.
However, the series is rather short, with n = 35. Compare the theoretical asymp-
totic distribution of the estimator of φ with the distribution of the bootstrap esti-
mator of φ. The data are in the file named color.


