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CHAPTER 9

FORECASTING

One of the primary objectives of building a model for a time series is to be able to fore-
cast the values for that series at future times. Of equal importance is the assessment of
the precision of those forecasts. In this chapter, we shall consider the calculation of fore-
casts and their properties for both deterministic trend models and ARIMA models. Fore-
casts for models that combine deterministic trends with ARIMA stochastic components
are considered also.

For the most part, we shall assume that the model is known exactly, including spe-
cific values for all the parameters. Although this is never true in practice, the use of esti-
mated parameters for large sample sizes does not seriously affect the results.

9.1 Minimum Mean Square Error Forecasting

Based on the available history of the series up to time t, namely Y1, Y2,…, Yt − 1, Yt, we
would like to forecast the value of Yt + l that will occur l time units into the future. We
call time t the forecast origin and l the lead time for the forecast, and denote the fore-
cast itself as .

As shown in Appendix F, the minimum mean square error forecast is given by

(9.1.1)

(Appendices E and F on page 218 review the properties of conditional expectation and
minimum mean square error prediction.)

The computation and properties of this conditional expectation as related to fore-
casting will be our concern for the remainder of this chapter.

9.2 Deterministic Trends

Consider once more the deterministic trend model of Chapter 3,

(9.2.1)

where the stochastic component, Xt, has a mean of zero. For this section, we shall
assume that {Xt} is in fact white noise with variance γ0. For the model in Equation
(9.2.1), we have

Ŷ t l( )

Ŷ t l( ) E Y
t l+

 |Y1 Y2 … Yt, , ,( )=

Yt μt Xt+=
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or

(9.2.2)

since for l ≥ 1, Xt + l is independent of Y1, Y2,…, Yt − 1, Yt and has expected value zero.
Thus, in this simple case, forecasting amounts to extrapolating the deterministic time
trend into the future.

For the linear trend case, μt = β0 + β1t, the forecast is

(9.2.3)

As we emphasized in Chapter 3, this model assumes that the same linear time trend per-
sists into the future, and the forecast reflects that assumption. Note that it is the lack of
statistical dependence between Yt + l and Y1, Y2,…, Yt − 1, Yt that prevents us from
improving on μt + l as a forecast.

For seasonal models where, say, , our forecast is  =
. Thus the forecast will also be periodic, as desired.

The forecast error, et(l), is given by

so that

That is, the forecasts are unbiased. Also

(9.2.4)

is the forecast error variance for all lead times l.
The cosine trend model for the average monthly temperature series was estimated

in Chapter 3 on page 35 as

Here time is measured in years with a starting value of January 1964, frequency f = 1 per
year, and the final observed value is for December 1975. To forecast the June 1976 tem-
perature value, we use t = 1976.41667 as the time value† and obtain

† June is the fifth month of the year, and 5/12 ≈ 0.416666666… .
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Forecasts for other months are obtained similarly.

9.3 ARIMA Forecasting

For ARIMA models, the forecasts can be expressed in several different ways. Each
expression contributes to our understanding of the overall forecasting procedure with
respect to computing, updating, assessing precision, or long-term forecasting behavior.

AR(1)

We shall first illustrate many of the ideas with the simple AR(1) process with a nonzero
mean that satisfies

(9.3.1)

Consider the problem of forecasting one time unit into the future. Replacing t by t + 1 in
Equation (9.3.1), we have

(9.3.2)

Given Y1, Y2,…, Yt − 1, Yt, we take the conditional expectations of both sides of Equation
(9.3.2) and obtain

(9.3.3)

Now, from the properties of conditional expectation, we have

(9.3.4)

Also, since et + 1 is independent of Y1, Y2, …, Yt − 1, Yt, we obtain

(9.3.5)

Thus, Equation (9.3.3) can be written as

(9.3.6)

In words, a proportion φ of the current deviation from the process mean is added to the
process mean to forecast the next process value.

Now consider a general lead time l. Replacing t by t + l in Equation (9.3.1) and tak-
ing the conditional expectations of both sides produces

(9.3.7)

since and, for l ≥ 1, et + l is independent of Y1,
Y2, …, Yt − 1, Yt.

μ̂t 46.2660 26.7079–( ) 2π 1976.41667( )( )cos 2.1697–( ) 2π 1976.41667( )( )sin+ +=

68.3 °F=

Yt μ– φ Yt 1– μ–( ) et+=

Yt 1+ μ– φ Yt μ–( ) et 1++=

Ŷ t 1( ) μ– φ E Yt |Y1 Y2 … Yt, , ,( ) μ–[ ] E et 1+ |Y1 Y2 … Yt, , ,( )+=

E Yt |Y1 Y2 … Yt, , ,( ) Yt=

E et 1+ |Y1 Y2 … Yt, , ,( ) E et 1+( ) 0= =

Ŷ t 1( ) μ φ Yt μ–( )+=

Ŷ t l( ) μ φ Ŷ t l 1–( ) μ–[ ]+=    for l 1≥

E Yt l 1–+ |Y1 Y2 … Yt, , ,( ) Ŷ t l 1–( )=
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Equation (9.3.7), which is recursive in the lead time l, shows how the forecast for
any lead time l can be built up from the forecasts for shorter lead times by starting with
the initial forecast computed using Equation (9.3.6). The forecast is then
obtained from , then from , and so on until the
desired is found. Equation (9.3.7) and its generalizations for other ARIMA models
are most convenient for actually computing the forecasts. Equation (9.3.7) is sometimes
called the difference equation form of the forecasts.

However, Equation (9.3.7) can also be solved to yield an explicit expression for the
forecasts in terms of the observed history of the series. Iterating backward on l in Equa-
tion (9.3.7), we have

or

(9.3.8)

The current deviation from the mean is discounted by a factor φl, whose magnitude
decreases with increasing lead time. The discounted deviation is then added to the pro-
cess mean to produce the lead l forecast.

As a numerical example, consider the AR(1) model that we have fitted to the indus-
trial color property time series. The maximum likelihood estimation results were par-
tially shown in Exhibit 7.7 on page 165, but more complete results are shown in Exhibit
9.1.

Exhibit 9.1 Maximum Likelihood Estimation of an AR(1) Model for Color

> data(color)
> m1.color=arima(color,order=c(1,0,0))
> m1.color

For illustration purposes, we assume that the estimates φ = 0.5705 and μ = 74.3293 are
true values. The final forecasts may then be rounded.

Coefficients: ar1 intercept†

†Remember that the intercept here is the estimate of the process mean μ—not θ0.

0.5705 74.3293

s.e. 0.1435 1.9151

sigma^2 estimated as 24.8: log-likelihood = −106.07, AIC = 216.15

Ŷ t 1( ) Ŷ t 2( )
Ŷ t 2( ) μ φ Ŷ t 1( ) μ–[ ]+= Ŷ t 3( ) Ŷ t 2( )

Ŷ t l( )

Ŷ t l( ) φ Ŷ t l 1–( ) μ–[ ] μ+=

φ φ Ŷ t l 2–( ) μ–[ ]{ } μ+=
...

φl 1– Ŷ t 1( ) μ–[ ] μ+=

Ŷ t l( ) μ φl Yt μ–( )+=
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The last observed value of the color property is 67, so we would forecast one time
period ahead as†

For lead time 2, we have from Equation (9.3.7)

Alternatively, we can use Equation (9.3.8):

At lead 5, we have

and by lead 10 the forecast is

which is very nearly μ (= 74.3293). In reporting these forecasts we would probably
round to the nearest tenth.

In general, since |φ| < 1, we have simply

(9.3.9)

Later we shall see that Equation (9.3.9) holds for all stationary ARMA models.
Consider now the one-step-ahead forecast error, . From Equations (9.3.2)

and (9.3.6), we have

or
(9.3.10)

† As round off error will accumulate, you should use many decimal places when performing
recursive calculations.

Ŷ t 1( ) 74.3293 0.5705( ) 67 74.3293–( )+=

74.3293 4.181366–=

70.14793=

Ŷ t 2( ) 74.3293 0.5705 70.14793 74.3293–( )+=

74.3293 2.385472–=

71.94383=

Ŷ t 2( ) 74.3293 0.5705( )2 67 74.3293–( )+=

71.92823=

Ŷ t 5( ) 74.3293 0.5705( )5 67 74.3293–( )+=

73.88636=

Ŷ t 10( ) 74.30253=

Ŷ t l( ) μ  for large l≈

et 1( )

et 1( ) Yt 1+ Ŷ t 1( )–=

φ Yt μ–( ) μ et 1++ +[ ] φ Yt μ–( ) μ+[ ]–=

et 1( ) et 1+=
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The white noise process {et} can now be reinterpreted as a sequence of one-step-ahead
forecast errors. We shall see that Equation (9.3.10) persists for completely general
ARIMA models. Note also that Equation (9.3.10) implies that the forecast error  is
independent of the history of the process Y1, Y2, …, Yt − 1, Yt up to time t. If this were
not so, the dependence could be exploited to improve our forecast.

Equation (9.3.10) also implies that our one-step-ahead forecast error variance is
given by

(9.3.11)

To investigate the properties of the forecast errors for longer leads, it is convenient to
express the AR(1) model in general linear process, or MA( ), form. From Equation
(4.3.8) on page 70, we recall that

(9.3.12)

Then Equations (9.3.8) and (9.3.12) together yield

so that

(9.3.13)

which can also be written as

(9.3.14)

Equation (9.3.14) will be shown to hold for all ARIMA models (see Equation (9.3.43)
on page 202).

Note that ; thus the forecasts are unbiased. Furthermore, from Equa-
tion (9.3.14), we have

(9.3.15)

We see that the forecast error variance increases as the lead l increases. Contrast this
with the result given in Equation (9.2.4) on page 192, for deterministic trend models.

In particular, for the AR(1) case,

(9.3.16)

which we obtain by summing a finite geometric series.
For long lead times, we have
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(9.3.17)

or, by Equation (4.3.3), page 66,

(9.3.18)

Equation (9.3.18) will be shown to be valid for all stationary ARMA processes (see
Equation (9.3.39) on page 201).

MA(1)

To illustrate how to solve the problems that arise in forecasting moving average or
mixed models, consider the MA(1) case with nonzero mean:

Again replacing t by t + 1 and taking conditional expectations of both sides, we have

(9.3.19)

However, for an invertible model, Equation (4.5.2) on page 80 shows that et is a function
of Y1, Y2, …, Yt and so

(9.3.20)

In fact, an approximation is involved in this equation since we are conditioning only on
Y1, Y2, …, Yt and not on the infinite history of the process. However, if, as in practice, t
is large and the model is invertible, the error in the approximation will be very small. If
the model is not invertible—for example, if we have overdifferenced the data—then
Equation (9.3.20) is not even approximately valid; see Harvey (1981c, p.161).

Using Equations (9.3.19) and (9.3.20), we have the one-step-ahead forecast for an
invertible MA(1) expressed as

(9.3.21)

The computation of et will be a by-product of estimating the parameters in the model.
Notice once more that the one-step-ahead forecast error is

as in Equation (9.3.10), and thus Equation (9.3.11) also obtains.
For longer lead times, we have

Var et l( )( )
σe

2

1 φ2–
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Yt μ et θet 1––+=

Ŷ t 1( ) μ θE et|Y1 Y2 … Yt, , ,( )–=

E et |Y1 Y2 … Yt, , ,( ) et=

Ŷ t 1( ) μ θet–=

et 1( ) Yt 1+ Ŷ t 1( )–=

μ et 1+ θet–+( ) μ θet–( )–=

et 1+=

Ŷ t l( ) μ E e
t l+

|Y1 Y2 … Yt, , ,( )+ θE e
t l 1–+

|Y1 Y2 … Yt, , ,( )–=
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But, for l > 1, both et + l and et + l − 1 are independent of Y1, Y2,…, Yt. Consequently,
these conditional expected values are the unconditional expected values, namely zero,
and we have

(9.3.22)

Notice here that Equation (9.3.9) on page 195 holds exactly for the MA(1) case when l >
1. Since for this model we trivially have ψ1 = −θ and ψj = 0 for j > 1, Equations (9.3.14)
and (9.3.15) also hold.

The Random Walk with Drift

To illustrate forecasting with nonstationary ARIMA series, consider the random walk
with drift defined by

(9.3.23)

Here

so that

(9.3.24)

Similarly, the difference equation form for the lead l forecast is

(9.3.25)

and iterating backward on l yields the explicit expression

(9.3.26)

In contrast to Equation (9.3.9) on page 195, if θ0 ≠ 0, the forecast does not converge for
long leads but rather follows a straight line with slope θ0 for all l.

Note that the presence or absence of the constant term θ0 significantly alters the
nature of the forecast. For this reason, constant terms should not be included in nonsta-
tionary ARIMA models unless the evidence is clear that the mean of the differenced
series is significantly different from zero. Equation (3.2.3) on page 28 for the variance
of the sample mean will help assess this significance.

However, as we have seen in the AR(1) and MA(1) cases, the one-step-ahead fore-
cast error is

Also

Ŷ t l( ) μ  for l 1>=

Yt Yt 1– θ0 et+ +=

Ŷ t 1( ) E Yt|Y1 Y2 … Yt, , ,( ) θ0 E et 1+ |Y1 Y2 … Yt, , ,( )+ +=

Ŷ t 1( ) Yt θ0+=

Ŷ t l( ) Ŷ t l 1–( ) θ0  for l 1≥+=

Ŷ t l( ) Yt θ0l  for l 1≥+=

et 1( ) Yt 1+ Ŷ t 1( )– et 1+= =
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which agrees with Equation (9.3.14) on page 196 since in this model ψj = 1 for all j.
(See Equation (5.2.6) on page 93 with θ = 0.)

So, as in Equation (9.3.15), we have

(9.3.27)

In contrast to the stationary case, here grows without limit as the forecast
lead time l increases. We shall see that this property is characteristic of the forecast error
variance for all nonstationary ARIMA processes.

ARMA(p,q)

For the general stationary ARMA(p,q) model, the difference equation form for comput-
ing forecasts is given by

(9.3.28)

where

(9.3.29)

We note that is a true forecast for j > 0, but for j ≤ 0, . As in Equa-
tion (9.3.20) on page 197, Equation (9.3.29) involves some minor approximation. For an
invertible model, Equation (4.5.5) on page 80 shows that, using the π-weights, et can be
expressed as a linear combination of the infinite sequence Yt, Yt − 1, Yt − 2,…. However,
the π-weights die out exponentially fast, and the approximation assumes that πj is negli-
gible for j > t − q.

As an example, consider an ARMA(1,1) model. We have

(9.3.30)

with

and, more generally,
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(9.3.31)

using Equation (9.3.30) to get the recursion started.
Equations (9.3.30) and (9.3.31) can be rewritten in terms of the process mean and

then solved by iteration to get the alternative explicit expression

(9.3.32)

As Equations (9.3.28) and (9.3.29) indicate, the noise terms et − (q − 1),…, et − 1, et
appear directly in the computation of the forecasts for leads l = 1, 2,…, q. However, for
l > q, the autoregressive portion of the difference equation takes over, and we have

(9.3.33)

Thus the general nature of the forecast for long lead times will be determined by the
autoregressive parameters φ1, φ2,…, φp (and the constant term, θ0, which is related to
the mean of the process).

Recalling from Equation (5.3.17) on page 97 that ,
we can rewrite Equation (9.3.33) in terms of deviations from μ as 

(9.3.34)

As a function of lead time l, follows the same Yule-Walker recursion as the
autocorrelation function ρk of the process (see Equation (4.4.8), page 79). Thus, as in
Section 4.3 on page 66 and Section 4.4 on page 77, the roots of the characteristic equa-
tion will determine the general behavior of for large lead times. In particular,

 can be expressed as a linear combination of exponentially decaying terms in l
(corresponding to the real roots) and damped sine wave terms (corresponding to the
pairs of complex roots).

Thus, for any stationary ARMA model,  decays to zero as l increases, and
the long-term forecast is simply the process mean μ as given in Equation (9.3.9) on
page 195. This agrees with common sense since for stationary ARMA models the
dependence dies out as the time span between observations increases, and this depen-
dence is the only reason we can improve on the “naive” forecast of using μ alone.

To argue the validity of Equation (9.3.15) for in the present generality, we
need to consider a new representation for ARIMA processes. Appendix G shows that
any ARIMA model can be written in truncated linear process form as

(9.3.35)

where, for our present purposes, we need only know that Ct(l) is a certain function of Yt,
Yt−1,… and

(9.3.36)
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Ŷ t l( ) μ–
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9.3  ARIMA Forecasting 201

Furthermore, for invertible models with t reasonably large, Ct(l) is a certain function of
the finite history Yt, Yt − 1,…, Y1. Thus we have

Finally,

Thus, for a general invertible ARIMA process,

(9.3.37)

and

(9.3.38)

From Equations (4.1.4) and (9.3.38), we see that for long lead times in stationary
ARMA models, we have

or
(9.3.39)

Nonstationary Models

As the random walk shows, forecasting for nonstationary ARIMA models is quite simi-
lar to forecasting for stationary ARMA models, but there are some striking differences.
Recall from Equation (5.2.2) on page 92 that an ARIMA(p,1,q) model can be written as
a nonstationary ARMA(p+1,q) model, We shall write this as

(9.3.40)

where the script coefficients ϕ are directly related to the block φ coefficients. In particu-
lar,
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(9.3.41)

For a general order of differencing d, we would have p + d of the ϕ coefficients.
From this representation, we can immediately extend Equations (9.3.28), (9.3.29),

and (9.3.30) on page 199 to cover the nonstationary cases by replacing p by p + d and φj
by ϕj.

As an example of the necessary calculations, consider the ARIMA(1,1,1) case.
Here

so that

Thus

(9.3.42)

For the general invertible ARIMA model, the truncated linear process representation
given in Equations (9.3.35) and (9.3.36) and the calculations following these equations
show that we can write

(9.3.43)

and so
(9.3.44)

and

(9.3.45)

However, for nonstationary series, the ψj-weights do not decay to zero as j increases.
For example, for the random walk model, ψj = 1 for all j; for the IMA(1,1) model, ψj =
1− θ for j ≥ 1; for the IMA(2,2) case, ψj = 1 + θ2 + (1 − θ1 − θ2)j for j ≥ 1; and for the
ARI(1,1) model, ψj = (1 − φ j+1)/(1 − φ) for j ≥ 1 (see Chapter 5).

Thus, for any nonstationary model, Equation (9.3.45) shows that the forecast error
variance will grow without bound as the lead time l increases. This fact should not be
too surprising since with nonstationary series the distant future is quite uncertain.
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9.4 Prediction Limits

As in all statistical endeavors, in addition to forecasting or predicting the unknown Yt + l ,
we would like to assess the precision of our predictions.

Deterministic Trends

For the deterministic trend model with a white noise stochastic component {Xt}, we
recall that

and

If the stochastic component is normally distributed, then the forecast error

(9.4.1)

is also normally distributed. Thus, for a given confidence level 1 − α, we could use a
standard normal percentile, z1 − α/2, to claim that

or, equivalently,

Thus we may be (1 − α)100% confident that the future observation Yt + l  will be
contained within the prediction limits

(9.4.2)

As a numerical example, consider the monthly average temperature series once
more. On page 192, we used the cosine model to predict the June 1976 average temper-
ature as 68.3°F. The estimate of for this model is 3.7°F. Thus 95%
prediction limits for the average June 1976 temperature are

Readers who are familiar with standard regression analysis will recall that since the
forecast involves estimated regression parameters, the correct forecast error variance is
given by γ0[1 + (1/n) +cn, l], where cn, l is a certain function of the sample size n and the
lead time l. However, it may be shown that for the types of trends that we are consider-
ing (namely, cosines and polynomials in time) and for large sample sizes n, the 1/n and
cn, l are both negligible relative to 1. For example, with a cosine trend of period 12 over
N = n/12 years, we have that cn, l = 2/n; thus the correct forecast error variance is

Ŷ t l( ) μ
t l+

=

Var et l( )( ) Var X
t l+

( ) γ0= =

et l( ) Y
t l+

Ŷ t l( )– X
t l+

= =

P z1 α 2⁄––
Y

t l+
Ŷ t l( )–

Var et l( )( )
----------------------------- z1 α 2⁄–< < 1 α–=

P Ŷ t l( ) z1 α 2⁄– Var et l( )( )– Y
t l+

Ŷ t l( ) z1 α 2⁄– Var et l( )( )+< <[ ] 1 α–=

Ŷ t l( ) z1 α 2⁄– Var et l( )( )±

Var et l( )( ) γ0=

68.3 1.96 3.7( )± 68.3 7.252  or  61.05°F  to  75.55°F±=
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γ0[1 + (3/n)] rather than our approximate γ0. For the linear time trend model, it can be
shown that cn, l = 3(n + 2l − 1)2/[n(n2 − 1)] ≈ 3/n for moderate lead l and large n. Thus,
again our approximation seems justified.

ARIMA Models

If the white noise terms {et} in a general ARIMA series each arise independently from a
normal distribution, then from Equation (9.3.43) on page 202, the forecast error

will also have a normal distribution, and the steps leading to Equation (9.4.2)
remain valid. However, in contrast to the deterministic trend model, recall that in the
present case

In practice, will be unknown and must be estimated from the observed time series.
The necessary ψ-weights are, of course, also unknown since they are certain functions
of the unknown φ’s and θ’s. For large sample sizes, these estimations will have little
effect on the actual prediction limits given above.

As a numerical example, consider the AR(1) model that we estimated for the indus-
trial color property series. From Exhibit 9.1 on page 194, we use φ = 0.5705, μ =
74.3293, and = 24.8. For an AR(1) model, we recall Equation (9.3.16) on page 196

For a one-step-ahead prediction, we have

Two steps ahead, we obtain

Notice that this prediction interval is wider than the previous interval. Forecasting ten
steps ahead leads to

By lead 10, both the forecast and the forecast limits have settled down to their long-lead
values.

9.5 Forecasting Illustrations

Rather than showing forecast and forecast limit calculations, it is often more instructive
to display appropriate plots of the forecasts and their limits.

et l( )

Var et l( )( ) σe
2 ψj

2

j 0=

l 1–

∑=

σe
2

σe
2

Var et l( )( ) σe
2 1 φ2l–

1 φ2–
----------------=

70.14793 1.96 24.8± 70.14793 9.760721  or  60.39  to  79.91±=

71.86072 11.88343  or  60.71  to  83.18±

74.173934 11.88451  or  62.42  to  86.19±
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Deterministic Trends

Exhibit 9.2 displays the last four years of the average monthly temperature time series
together with forecasts and 95% forecast limits for two additional years. Since the
model fits quite well with a relatively small error variance, the forecast limits are quite
close to the fitted trend forecast.

Exhibit 9.2 Forecasts and Limits for the Temperature Cosine Trend

> data(tempdub)
> tempdub1=ts(c(tempdub,rep(NA,24)),start=start(tempdub), 

freq=frequency(tempdub)) 
> har.=harmonic(tempdub,1)
> m5.tempdub=arima(tempdub,order=c(0,0,0),xreg=har.)
> newhar.=harmonic(ts(rep(1,24), start=c(1976,1),freq=12),1)
> win.graph(width=4.875, height=2.5,pointsize=8)
> plot(m5.tempdub,n.ahead=24,n1=c(1972,1),newxreg=newhar., 

type='b',ylab='Temperature',xlab='Year')

ARIMA Models

We use the industrial color property series as our first illustration of ARIMA forecast-
ing. Exhibit 9.3 displays this series together with forecasts out to lead time 12 with the
upper and lower 95% prediction limits for those forecasts. In addition, a horizontal line
at the estimate for the process mean is shown. Notice how the forecasts approach the
mean exponentially as the lead time increases. Also note how the prediction limits
increase in width.
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Exhibit 9.3 Forecasts and Forecast Limits for the AR(1) Model for Color

> data(color)
> m1.color=arima(color,order=c(1,0,0))
> plot(m1.color,n.ahead=12,type='b',xlab='Time',

ylab='Color Property')
> abline(h=coef(m1.color)[names(coef(m1.color))=='intercept'])

The Canadian hare abundance series was fitted by working with the square root of
the abundance numbers and then fitting an AR(3) model. Notice how the forecasts
mimic the approximate cycle in the actual series even when we forecast with a lead time
out to 25 years in Exhibit 9.4.

Exhibit 9.4 Forecasts from an AR(3) Model for Sqrt(Hare)

> data(hare)
> m1.hare=arima(sqrt(hare),order=c(3,0,0))
> plot(m1.hare, n.ahead=25,type='b', 

xlab='Year',ylab='Sqrt(hare)')
> abline(h=coef(m1.hare)[names(coef(m1.hare))=='intercept'])
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9.6 Updating ARIMA Forecasts

Suppose we are forecasting a monthly time series. Our last observation is, say, for Feb-
ruary, and we forecast for March, April, and May. As time goes by, the actual value for
March becomes available. With this new value in hand, we would like to update or
revise (and, one hopes, improve) our forecasts for April and May. Of course, we could
compute new forecasts from scratch. However, there is a simpler way.

For a general forecast origin t and lead time l + 1, our original forecast is denoted
. Once the observation at time t + 1 becomes available, we would like to update

our forecast as . Equations (9.3.35) and (9.3.36) on page 200 yield

Since Ct(l+1) and et + 1 are functions of Yt + 1, Yt,…, whereas et + l + 1, et + l,…, et + 2 are
independent of Yt + 1, Yt,…, we quickly obtain the expression

However, , and, of course, . Thus we have
the general updating equation

(9.6.1)

Notice that is the actual forecast error at time t + 1 once has been
observed.

As a numerical example, consider the industrial color property time series. Follow-
ing Exhibit 9.1 on page 194, we fit an AR(1) model to forecast one step ahead as

 and two steps ahead as . If now the next color
value becomes available as Yt + 1 = Y36 = 65, then we update the forecast for time t = 37
as

9.7 Forecast Weights and Exponentially Weighted
Moving Averages

For ARIMA models without moving average terms, it is clear how the forecasts are
explicitly determined from the observed series Yt, Yt − 1,…, Y1. However, for any model
with q > 0, the noise terms appear in the forecasts, and the nature of the forecasts explic-
itly in terms of Yt, Yt − 1,…, Y1 is hidden. To bring out this aspect of the forecasts, we
return to the inverted form of any invertible ARIMA process, namely

(See Equation (4.5.5) on page 80.) Thus we can also write

Ŷ t l 1+( )
Ŷ t 1+ l( )

Y
t l 1+ +

Ct l 1+( ) e
t l 1+ +

ψ1e
t l+

ψ2e
t l 1–+

… ψl et 1++ + + + +=

Ŷ t 1+ l( ) Ct l 1+( ) ψlet 1++=

Ŷ t l 1+( ) Ct l 1+( )= et 1+ Yt 1+ Ŷ t 1( )–=

Ŷ t 1+ l( ) Ŷ t l 1+( ) ψl Yt 1+ Ŷ t 1( )–[ ]+=

Yt 1+ Ŷ t 1( )–[ ] Yt 1+

Ŷ35 1( ) 70.096= Ŷ 35 2( ) 71.86072=

Ŷ t 1+ 1( ) Ŷ36 1( ) 71.86072 0.5705 65 70.096–( )+ 68.953452= = =

Yt π1Yt 1– π2Yt 2– π3Yt 3–
… et+ + + +=
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Taking conditional expectations of both sides, given Yt, Yt − 1, …, Y1, we obtain

(9.7.1)

(We are assuming the t is sufficiently large and/or that the π-weights die out sufficiently
quickly so that πt, πt + 1,… are all negligible.)

For any invertible ARIMA model, the π-weights can be calculated recursively from
the expressions

(9.7.2)

with initial value π0 = −1. (Compare this with Equations (4.4.7) on page 79 for the
ψ-weights.)

Consider in particular the nonstationary IMA(1,1) model

Here p = 0, d = 1, q = 1, with ϕ1 = 1; thus

and, generally,

Thus we have explicitly

(9.7.3)

so that, from Equation (9.7.1), we can write

(9.7.4)

In this case, the π-weights decrease exponentially, and furthermore,

Thus is called an exponentially weighted moving average (EWMA).
Simple algebra shows that we can also write

(9.7.5)

Yt 1+ π1Yt π2Yt 1– π3Yt 2–
… et 1++ + + +=

Ŷ t 1( ) π1Yt π2Yt 1– π3Yt 2–
…+ + +=

πj

θiπj i–
i 1=

min j q,( )

∑ ϕj  for  1 j p d+≤ ≤+

θiπj i–   for j p d+>
i 1=

min j q,( )

∑
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

Yt Yt 1– et θet 1––+=

π1 θπ0 1+ 1 θ–= =

π2 θπ1 θ 1 θ–( )= =

πj θπj 1–   for j 1>=

πj 1 θ–( )θ j 1–   for j 1≥=

Ŷ t 1( ) 1 θ–( )Yt 1 θ–( )θYt 1– 1 θ–( )θ2Yt 2–
…+ + +=

πj
j 1=

∞
∑ 1 θ–( ) θ j 1–

j 1=

∞
∑ 1 θ–

1 θ–
------------ 1= = =

Ŷ t 1( )

Ŷ t 1( ) 1 θ–( )Yt θŶ t 1– 1( )+=
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and

(9.7.6)

Equations (9.7.5) and (9.7.6) show how to update forecasts from origin t − 1 to origin t,
and they express the result as a linear combination of the new observation and the old
forecast or in terms of the old forecast and the last observed forecast error.

Using EWMA to forecast time series has been advocated, mostly on an ad hoc
basis, for a number of years; see Brown (1962) and Montgomery and Johnson (1976).

The parameter 1 − θ is called the smoothing constant in EWMA literature, and its
selection (estimation) is often quite arbitrary. From the ARIMA model-building
approach, we let the data indicate whether an IMA(1,1) model is appropriate for the
series under consideration. If so, we then estimate θ in an efficient manner and compute
an EWMA forecast that we are confident is the minimum mean square error forecast. A
comprehensive treatment of exponential smoothing methods and their relationships with
ARIMA models is given in Abraham and Ledolter (1983).

9.8 Forecasting Transformed Series

Differencing

Suppose we are interested in forecasting a series whose model involves a first difference
to achieve stationarity. Two methods of forecasting can be considered:

1. forecasting the original nonstationary series, for example by using the difference 
equation form of Equation (9.3.28) on page 199, with φ’s replaced by ϕ’s 
throughout, or

2. forecasting the stationary differenced series Wt = Yt − Yt − 1 and then “undoing” 
the difference by summing to obtain the forecast in original terms.

We shall show that both methods lead to the same forecasts. This follows essentially
because differencing is a linear operation and because conditional expectation of a lin-
ear combination is the same linear combination of the conditional expectations.

Consider in particular the IMA(1,1) model. Basing our work on the original nonsta-
tionary series, we forecast as

(9.8.1)

and

(9.8.2)

Consider now the differenced stationary MA(1) series Wt = Yt − Yt − 1. We would fore-
cast Wt + l as

(9.8.3)

and

(9.8.4)

Ŷ t 1( ) Ŷ t 1– 1( ) 1 θ–( ) Yt Ŷ t 1– 1( )–[ ]+=

Ŷ t 1( ) Yt θet–=

Ŷ t l( ) Ŷ t l 1–( )  for l 1>=

Ŵt 1( ) θet–=

Ŵt l( ) 0  for l 1>=
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However, ; thus  is equivalent to 

as before. Similarly, , and Equation (9.8.4) becomes Equation
(9.8.2), as we have claimed.

The same result would apply to any model involving differences of any order and
indeed to any type of linear transformation with constant coefficients. (Certain linear
transformations other than differencing may be applicable to seasonal time series. See
Chapter 10.)

Log Transformations

As we saw earlier, it is frequently appropriate to model the logarithms of the original
series—a nonlinear transformation. Let Yt denote the original series value and let Zt =
log(Yt). It can be shown that we always have

(9.8.5)

with equality holding only in trivial cases. Thus, the naive forecast  is not the
minimum mean square error forecast of Yt + l. To evaluate the minimum mean square
error forecast in original terms, we shall find the following fact useful: If X has a normal
distribution with mean μ and variance , then

(This follows, for example, from the moment-generating function for X.) In our applica-
tion

and

These follow from Equations (9.3.35) and (9.3.36) (applied to Zt) and the fact that 
is a function of Zt, Zt − 1,…, whereas et(l) is independent of Zt, Zt − 1,… . Thus the mini-
mum mean square error forecast in the original series is given by

(9.8.6)

Throughout our discussion of forecasting, we have assumed that minimum mean square
forecast error is the criterion of choice. For normally distributed variables, this is an

Ŵt 1( ) Ŷ t 1( ) Yt–= Ŵt 1( ) θet–= Ŷ t 1( ) Yt θet–=
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excellent criterion. However, if Zt has a normal distribution, then Yt = exp(Zt) has a log-
normal distribution, for which a different criterion may be desirable. In particular, since
the log-normal distribution is asymmetric and has a long right tail, a criterion based on
the mean absolute error may be more appropriate. For this criterion, the optimal forecast
is the median of the distribution of Zt+ l conditional on Zt, Zt − 1,…, Z1. Since the log
transformation preserves medians and since, for a normal distribution, the mean and
median are identical, the naive forecast  is the optimal forecast for Yt + l in
the sense that it minimizes the mean absolute forecast error.

9.9 Summary of Forecasting with Certain ARIMA Models

Here we bring together various forecasting results for special ARIMA models.

AR(1): 

MA(1): 

Ẑ t l( )[ ]exp

Yt μ φ Yt 1– μ–( ) et+ +=

Ŷ t l( ) μ φ Ŷ t l 1–( ) μ–[ ]+=    for l 1≥
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et l( ) e
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φe
t l 1–+

… φl 1– et 1++ + +=
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1 φ2–
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σe
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1 φ2–
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IMA (1,1) with Constant Term: 

Note that if θ0 ≠ 0, the forecasts follow a straight line with slope θ0, but if θ0 = 0, which
is the usual case, then the forecast is the same for all lead times, namely

IMA(2,2): 

(9.9.1)

(9.9.2)

where

(9.9.3)

and

(9.9.4)

If θ0 ≠ 0, the forecasts follow a quadratic curve in l, but if θ0 = 0, the forecasts form a
straight line with slope  and will pass through the two initial forecasts

and . It can be shown that is a certain cubic function of l ; see
Box, Jenkins, and Reinsel (1994, p. 156). We also have

(9.9.5)
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Ŷ t 2( ) Ŷ t 1( )–
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It can also be shown that forecasting the special case with θ1 = 2ω and θ2 = −ω2 is
equivalent to so-called double exponential smoothing with smoothing constant 1 − ω;
see Abraham and Ledolter (1983).

9.10 Summary

Forecasting or predicting future as yet unobserved values is one of the main reasons for
developing time series models. Methods discussed in this chapter are all based on mini-
mizing the mean square forecasting error. When the model is simply deterministic trend
plus zero mean white noise error, forecasting amounts to extrapolating the trend. How-
ever, if the model contains autocorrelation, the forecasts exploit the correlation to pro-
duce better forecasts than would otherwise be obtained. We showed how to do this with
ARIMA models and investigated the computation and properties of the forecasts. In
special cases, the computation and properties of the forecasts are especially interesting
and we presented them separately. Prediction limits are especially important to assess
the potential accuracy (or otherwise) of the forecasts. Finally, we addressed the problem
of forecasting time series for which the models involve transformation of the original
series.

EXERCISES

9.1 For an AR(1) model with Yt = 12.2, φ = −0.5, and μ = 10.8,
(a) Find .
(b) Calculate  in two different ways.
(c) Calculate .

9.2 Suppose that annual sales (in millions of dollars) of the Acme Corporation follow
the AR(2) model  with .
(a) If sales for 2005, 2006, and 2007 were $9 million, $11 million, and $10 mil-

lion, respectively, forecast sales for 2008 and 2009.
(b) Show that  for this model.
(c) Calculate 95% prediction limits for your forecast in part (a) for 2008.
(d) If sales in 2008 turn out to be $12 million, update your forecast for 2009.

9.3 Using the estimated cosine trend on page 192:
(a) Forecast the average monthly temperature in Dubuque, Iowa, for April 1976. 
(b) Find a 95% prediction interval for that April forecast. (The estimate of 

for this model is 3.719°F.)
(c) What is the forecast for April, 1977? For April 2009?

9.4 Using the estimated cosine trend on page 192:
(a) Forecast the average monthly temperature in Dubuque, Iowa, for May 1976. 
(b) Find a 95% prediction interval for that May 1976 forecast. (The estimate of

 for this model is 3.719°F.)

Ŷ t 1( )
Ŷ t 2( )
Ŷ t 10( )

Yt 5 1.1Yt 1– 0.5Yt 2–– et+ += σe
2 2=

ψ1 1.1=

γ0

γ0



214 Forecasting

9.5 Using the seasonal means model without an intercept shown in Exhibit 3.3 on
page 32:
(a) Forecast the average monthly temperature in Dubuque, Iowa, for April, 1976. 
(b) Find a 95% prediction interval for that April forecast. (The estimate of 

for this model is 3.419°F.)
(c) Compare your forecast with the one obtained in Exercise 9.3.
(d) What is the forecast for April 1977? April 2009?

9.6 Using the seasonal means model with an intercept shown in Exhibit 3.4 on page
33:
(a) Forecast the average monthly temperature in Dubuque, Iowa, for April 1976. 
(b) Find a 95% prediction interval for that April forecast. (The estimate of 

for this model is 3.419°F.)
(c) Compare your forecast with the one obtained in Exercise 9.5.

9.7 Using the seasonal means model with an intercept shown in Exhibit 3.4 on page
33 
(a) Forecast the average monthly temperature in Dubuque, Iowa, for January

1976. 
(b) Find a 95% prediction interval for that January forecast. (The estimate of 

for this model is 3.419°F.)
9.8 Consider the monthly electricity generation time series shown in Exhibit 5.8 on

page 99. The data are in the file named electricity.
(a) Fit a deterministic trend model containing seasonal means together with a lin-

ear time trend to the logarithms of the electricity values.
(b) Plot the last five years of the series together with two years of forecasts and

the 95% forecast limits. Interpret the plot.
9.9 Simulate an AR(1) process with φ = 0.8 and μ = 100. Simulate 48 values but set

aside the last 8 values to compare forecasts to actual values.
(a) Using the first 40 values of the series, find the values for the maximum likeli-

hood estimates of φ and μ.
(b) Using the estimated model, forecast the next eight values of the series. Plot

the series together with the eight forecasts. Place a horizontal line at the esti-
mate of the process mean.

(c) Compare the eight forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and the same sample size.
9.10 Simulate an AR(2) process with φ1 = 1.5, φ2 = −0.75, and μ = 100. Simulate 52

values but set aside the last 12 values to compare forecasts to actual values.
(a) Using the first 40 values of the series, find the values for the maximum likeli-

hood estimates of the φ’s and μ.
(b) Using the estimated model, forecast the next 12 values of the series. Plot the

series together with the 12 forecasts. Place a horizontal line at the estimate of

γ0

γ0

γ0
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the process mean.
(c) Compare the 12 forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
9.11 Simulate an MA(1) process with θ = 0.6 and μ = 100. Simulate 36 values but set

aside the last 4 values to compare forecasts to actual values.
(a) Using the first 32 values of the series, find the values for the maximum likeli-

hood estimates of the θ and μ.
(b) Using the estimated model, forecast the next four values of the series. Plot the

series together with the four forecasts. Place a horizontal line at the estimate
of the process mean.

(c) Compare the four forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
9.12 Simulate an MA(2) process with θ1 = 1, θ2 = −0.6, and μ = 100. Simulate 36 val-

ues but set aside the last 4 values with compare forecasts to actual values.
(a) Using the first 32 values of the series, find the values for the maximum likeli-

hood estimates of the θ’s and μ.
(b) Using the estimated model, forecast the next four values of the series. Plot the

series together with the four forecasts. Place a horizontal line at the estimate
of the process mean.

(c) What is special about the forecasts at lead times 3 and 4?
(d) Compare the four forecasts with the actual values that you set aside.
(e) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(f) Repeat parts (a) through (e) with a new simulated series using the same values

of the parameters and same sample size.
9.13 Simulate an ARMA(1,1) process with φ = 0.7, θ = −0.5, and μ = 100. Simulate 50

values but set aside the last 10 values to compare forecasts with actual values.
(a) Using the first 40 values of the series, find the values for the maximum likeli-

hood estimates of φ, θ, and μ.
(b) Using the estimated model, forecast the next ten values of the series. Plot the

series together with the ten forecasts. Place a horizontal line at the estimate of
the process mean.

(c) Compare the ten forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
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9.14 Simulate an IMA(1,1) process with θ = 0.8 and θ0 = 0. Simulate 35 values, but set
aside the last five values to compare forecasts with actual values.
(a) Using the first 30 values of the series, find the value for the maximum likeli-

hood estimate of θ.
(b) Using the estimated model, forecast the next five values of the series. Plot the

series together with the five forecasts. What is special about the forecasts?
(c) Compare the five forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
9.15 Simulate an IMA(1,1) process with θ = 0.8 and θ0 = 10. Simulate 35 values, but

set aside the last five values to compare forecasts to actual values.
(a) Using the first 30 values of the series, find the values for the maximum likeli-

hood estimates of θ and θ0.
(b) Using the estimated model, forecast the next five values of the series. Plot the

series together with the five forecasts. What is special about these forecasts?
(c) Compare the five forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
9.16 Simulate an IMA(2,2) process with θ1 = 1, θ2 = −0.75, and θ0 = 0. Simulate 45

values, but set aside the last five values to compare forecasts with actual values.
(a) Using the first 40 values of the series, find the value for the maximum likeli-

hood estimate of θ1 and θ2.
(b) Using the estimated model, forecast the next five values of the series. Plot the

series together with the five forecasts. What is special about the forecasts?
(c) Compare the five forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
9.17 Simulate an IMA(2,2) process with θ1 = 1, θ2 = −0.75, and θ0 = 10. Simulate 45

values, but set aside the last five values to compare forecasts with actual values.
(a) Using the first 40 values of the series, find the values for the maximum likeli-

hood estimates of θ1, θ2, and θ0.
(b) Using the estimated model, forecast the next five values of the series. Plot the

series together with the five forecasts. What is special about these forecasts?
(c) Compare the five forecasts with the actual values that you set aside.
(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall

within the forecast limits?
(e) Repeat parts (a) through (d) with a new simulated series using the same values

of the parameters and same sample size.
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9.18 Consider the model , where . We assume
that β0, β1, and φ are known. Show that the minimum mean square error forecast l
steps ahead can be written as .

9.19 Verify Equation (9.3.16) on page 196.
9.20 Verify Equation (9.3.32) on page 200.
9.21 The data file named deere3 contains 57 consecutive values from a complex

machine tool process at Deere & Co. The values given are deviations from a tar-
get value in units of ten millionths of an inch. The process employs a control
mechanism that resets some of the parameters of the machine tool depending on
the magnitude of deviation from target of the last item produced.
(a) Using an AR(1) model for this series, forecast the next ten values.
(b) Plot the series, the forecasts, and 95% forecast limits, and interpret the results.

9.22 The data file named days contains accounting data from the Winegard Co. of Bur-
lington, Iowa. The data are the number of days until Winegard receives payment
for 130 consecutive orders from a particular distributor of Winegard products.
(The name of the distributor must remain anonymous for confidentiality reasons.)
The time series contains outliers that are quite obvious in the time series plot.
Replace each of the unusual values at “times” 63, 106, and 129 with the much
more typical value of 35 days.
(a) Use an MA(2) model to forecast the next ten values of this modified series.
(b) Plot the series, the forecasts, and 95% forecast limits, and interpret the results.

9.23 The time series in the data file robot gives the final position in the “x-direction”
after an industrial robot has finished a planned set of exercises. The measure-
ments are expressed as deviations from a target position. The robot is put through
this planned set of exercises in the hope that its behavior is repeatable and thus
predictable.
(a) Use an IMA(1,1) model to forecast five values ahead. Obtain 95% forecast

limits also.
(b) Display the forecasts, forecast limits, and actual values in a graph and inter-

pret the results.
(c) Now use an ARMA(1,1) model to forecast five values ahead and obtain 95%

forecast limits. Compare these results with those obtained in part (a).
9.24 Exhibit 9.4 on page 206 displayed the forecasts and 95% forecast limits for the

square root of the Canadian hare abundance. The data are in the file named hare.
Produce a similar plot in original terms. That is, plot the original abundance val-
ues together with the squares of the forecasts and squares of the forecast limits.

9.25 Consider the seasonal means plus linear time trend model for the logarithms of
the monthly electricity generation time series in Exercise 9.8. (The data are in the
file named electricity.)
(a) Find the two-year forecasts and forecast limits in original terms. That is, expo-

nentiate (antilog) the results obtained in Exercise 9.8.
(b) Plot the last five years of the original time series together with two years of

forecasts and the 95% forecast limits, all in original terms. Interpret the plot.

Yt β0 β1t Xt+ += Xt φXt 1– et+=

Ŷ t l( ) β0 β1 t l+( ) φl Yt β0– β1t–( )+ +=
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Appendix E: Conditional Expectation

If X and Y have joint pdf f(x,y) and we denote the marginal pdf of X by f(x), then the
conditional pdf of Y given X = x is given by

For a given value of x, the conditional pdf has all of the usual properties of a pdf. In par-
ticular, the conditional expectation of Y given X = x is defined as

As an expected value or mean, the conditional expectation of Y given X = x has all of
the usual properties. For example,

(9.E.1)

and

(9.E.2)

In addition, several new properties arise:

(9.E.3)

That is, given X = x, the random variable h(X) can be treated like a constant h(x). More
generally,

(9.E.4)

If we set , then g(X) is a random variable and we can consider
E[g(X)]. It can be shown that

which is often written as
(9.E.5)

If Y and X are independent, then

(9.E.6)

Appendix F: Minimum Mean Square Error Prediction

Suppose Y is a random variable with mean μY and variance . If our object is to pre-
dict Y using only a constant c, what is the best choice for c? Clearly, we must first define
best. A common (and convenient) criterion is to choose c to minimize the mean square
error of prediction, that is, to minimize

f y x( ) f x y,( )
f x( )

---------------=

E Y X=x( ) yf y x( ) yd
∞–
∞∫=

E aY bZ c+ + X=x( ) aE Y X=x( ) bE Z X=x( ) c+ +=

E h Y( ) X = x[ ] yf y x( ) xd
∞–
∞∫=

E h X( ) X=x[ ] h x( )=

E h X Y,( ) X=x[ ] E h x Y,( ) X=x( )=

E Y X=x( ) g x( )=

E g X( )[ ] E Y( )=

E E Y X( )[ ] E Y( )=

E Y X( ) E Y( )=

σY
2

g c( ) E Y c–( )2[ ]=
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If we expand g(c), we have

Since g(c) is quadratic in c and opens upward, solving will produce the
required minimum. We have

so that the optimal c is
(9.F.1)

Note also that

(9.F.2)

Now consider the situation where a second random variable X is available and we
wish to use the observed value of X to help predict Y. Let ρ = Corr (X,Y). We first sup-
pose, for simplicity, that only linear functions a + bX can be used for the prediction. The
mean square error is then given by

and expanding we gave

This is also quadratic in a and b and opens upward. Thus we can find the point of mini-
mum by solving simultaneous linear equations  and  = 0.
We have

which we rewrite as

Multiplying the first equation by E(X) and subtracting yields

(9.F.3)

Then

(9.F.4)

If we let be the minimum mean square error prediction of Y based on a linear
function of X, then we can write

(9.F.5)

or

g c( ) E Y2( ) 2cE Y( )– c2+=

g' c( ) 0=

g' c( ) 2E Y( )– 2c+=

c E Y( ) μ= =

 min
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g c( ) E Y μ–( )2 σY
2= =
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a E X( )b+ E Y( )=
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Ŷ
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(9.F.6)

In terms of standardized variables and , we have simply .
Also, using Equations (9.F.3) and (9.F.4), we find

(9.F.7)

which provides a proof that −1 ≤ ρ ≤ +1 since g(a,b) ≥ 0.
If we compare Equation (9.F.7) with Equation (9.F.2), we see that the minimum

mean square error obtained when we use a linear function of X to predict Y is reduced by
a factor of 1 − ρ2 compared with that obtained by ignoring X and simply using the con-
stant μY for our prediction.

Let us now consider the more general problem of predicting Y with an arbitrary
function of X. Once more our criterion will be to minimize the mean square error of pre-
diction. We need to choose the function h(X), say, that minimizes

(9.F.8)

Using Equation (9.E.5), we can write this as

(9.F.9)

Using Equation (9.E.4), the inner expectation can be written as

(9.F.10)

For each value of x, h(x) is a constant, and we can apply the result of Equation (9.F.1) to
the conditional distribution of Y given X = x. Thus, for each x, the best choice of h(x) is

(9.F.11)

Since this choice of h(x) minimizes the inner expectation in Equation (9.F.9), it must
also provide the overall minimum of Equation (9.F.8). Thus

(9.F.12)

is the best predictor of Y of all functions of X.
If X and Y have a bivariate normal distribution, it is well-known that

so that the solutions given in Equations (9.F.12) and (9.F.5) coincide. In this case, the
linear predictor is the best of all functions.

More generally, if Y is to be predicted by a function of X1, X2,…, Xn, then it can be
easily argued that the minimum square error predictor is given by

(9.F.13)

Ŷ μY–

σY
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X μX–
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h X( ) E Y X( )=

E Y X( ) μY ρ
σY

σX
------ X μX–( )+=

E Y X1 X2 … Xn, , ,( )
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Appendix G: The Truncated Linear Process

Suppose {Yt} satisfies the general ARIMA(p,d,q) model with AR characteristic polyno-
mial φ(x), MA characteristic polynomial θ(x), and constant term θ0. Then the truncated
linear process representation for {Yt} is given by

(9.G.1)

where

(9.G.2)

(9.G.3)

and Ai , Bi j , i = 1, 2,…, r, j = 1, 2,…, pi , are constant in l and depend only on Yt,
Yt − 1,… .† As always, the ψ-weights are defined by the identity

(9.G.4)

or

(9.G.5)

We shall show that the representation given by Equation (9.G.1) is valid by arguing
that, for fixed t, is essentially the complementary function of the defining differ-
ence equation, that is,

(9.G.6)

and that is a particular solution (without θ0):

(9.G.7)

Since contains p + d arbitrary constants (the A’s and the B’s), summing  and
 yields the general solution of the ARIMA equation. Specific values for the A’s and

B’s will be determined by initial conditions on the {Yt} process.
We note that Ad is not arbitrary. We have

(9.G.8)

The proof that  as given by Equation (9.G.2) is the complementary function and
satisfies Equation (9.G.6) is a standard result from the theory of difference equations

† The only property of the Ct(l) that we need is that it depends only on Yt, Yt − 1,… .
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(see, for example, Goldberg, 1958). We shall show that the particular solution 
defined by Equation (9.G.2) does satisfy Equation (9.G.7).

For convenience of notation, we let  = 0 for j > p + d. Consider the left-hand side
of Equation (9.G.7). It can be written as:

(9.G.9)

Now grouping together common et terms and picking off their coefficients, we obtain

Coefficient of et + l − 1 : 
Coefficient of et + l − 2 : 
Coefficient of et + l − 3 : 

Coefficient of et + 1 : 

If l > q, we can match these coefficients to the corresponding coefficients on the
right-hand side of Equation (9.G.7) to obtain the relationships

(9.G.10)

However, by comparing these relationships with Equation (9.G.5), we see that Equa-
tions (9.G.10) are precisely the equations defining the ψ-weights and thus Equation
(9.G.7) is established as required.

Appendix H: State Space Models

Control theory engineers have developed and successfully used so-called state space
models and Kalman filtering since Kalman published his seminal work in 1960.
Recent references include Durbin and Koopman (2001) and Harvey et al. (2004). 

Consider a general stationary and invertible ARMA(p,q) process {Zt}. Put m =
max(p, q + 1) and define the state of the process at time t as the column vector of
length m whose jth element is the forecast for j = 0, 1, 2,…, m − 1, based on Zt,
Zt − 1,… . Note that the lead element of is just = Zt. 

Recall the updating Equation (9.6.1) on page 207, which in the present context can
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be written

(9.H.1)

We shall use this expression directly for l = 0, 1, 2,…, m − 2. For l = m − 1, we have

(9.H.2)

where the last expression comes from Equation (9.3.34) on page 200, with μ = 0.
The matrix formulation of Equations (9.H.1) and (9.H.2) relating  to 

and , called the equations of state (or Akaike’s Markovian representation), is
given as

(9.H.3)

where

(9.H.4)

and

(9.H.5)

with for j > p. Note that the simplicity of Equation (9.H.3) is obtained at the
expense of having to deal with vector-valued processes. Because the state space formu-
lation also usually allows for measurement error, we do not observe Zt directly but only
observe Yt through the observational equation

(9.H.6)

where = [1, 0, 0,…, 0] and is another zero-mean white noise process indepen-
dent of . The special case of no measurement error is obtained by setting in
Equation (9.H.6). Equivalently, this case is obtained by taking  in subsequent
equations. More general state space models allow , , and to be more general, pos-
sibly also depending on time.
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Evaluation of the Likelihood Function and Kalman Filtering

First a definition: The covariance matrix for a vector of random variables X of dimen-
sion n×1 is defined to be the n×n matrix whose ij th element is the covariance between
the ith and jth components of X.

If Y = AX + B, then it is easily shown that the covariance matrix for Y is AVAT,
where V is the covariance matrix for X and the superscript T denotes matrix transpose.

Getting back to the Kalman filter, we let denote the m×1 vector whose
j th component is for j = 0, 1, 2,…, m − 1. Similarly, let

 be the vector whose j th component is for j = 0, 1,
2,…, m − 1.

Then, since et + 1 is independent of Zt, Zt − 1,…, and hence also of Yt, Yt − 1,…, we
see from Equation (9.H.3) that

(9.H.7)

Also letting  be the covariance matrix for the “forecast error” −
 and  be the covariance matrix for the “forecast error” ,

we have from Equation (9.H.3) that

(9.H.8)

From the observational equation (Equation (9.H.6)) and then replacing t + 1 by t,

(9.H.9)

where .
It can now be shown that the following relationships hold (see, for example, Har-

vey, 1981c):
(9.H.10)

where

(9.H.11)

and
(9.H.12)

Collectively, Equations (9.H.10), (9.H.11), and (9.H.12) are referred to as the Kalman
filter equations. The quantity

(9.H.13)

in Equation (9.H.10) is the prediction error and is independent of (or at least uncorre-
lated with) the past observations Yt, Yt − 1,… . Since we are allowing for measurement
error, is not, in general, the same as .

From Equations (9.H.13) and (9.H.6), we have

(9.H.14)
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Now consider the likelihood function for the observed series Y1, Y2,…, Yn. From the
definition of the conditional probability density function, we can write

or, by taking logs,

(9.H.15)

Assume now that we are dealing with normal distributions, that is, that and
are normal white noise processes. Then it is known that the distribution of Yn con-

ditional on Y1 = y1, Y2 = y2,…, Yn − 1 = yn − 1, is also normal with mean and
variance vn. In the remainder of this section and the next, we write  for the
observed value of .The second term on the right-hand side of Equation
(9.H.15) can then be written

Furthermore, the first term on the right-hand side of Equation (9.H.15) can be
decomposed similarly again and again until we have

(9.H.16)

which then becomes the prediction error decomposition of the likelihood, namely

(9.H.17)

with and v1 = Var(Y1).
The overall strategy for computing the likelihood for a given set of parameter val-

ues is to use the Kalman filter equations to generate recursively the prediction errors and
their variances and then use the prediction error decomposition of the likelihood func-
tion. Only one point remains: We need initial values and to get the recur-
sions started.

The Initial State Covariance Matrix

The initial state vector will be a vector of zeros for a zero-mean process, and
is the covariance matrix for . Now, because is the

column vector with elements , it is necessary for us to evalu-
ate

From the truncated linear process form, Equation (9.3.35) on page 200 with 
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Ẑ t l( )



226 Forecasting

(9.H.18)

Multiplying Equation (9.H.18) by Z0 and taking expected values yields

(9.H.19)

Now multiply Equation (9.H.18) by itself with j replaced by i and take expected values.
Recalling that the e’s are independent of past Z’s and assuming 0 < i ≤ j, we obtain

(9.H.20)

Combining Equations (9.H.19) and (9.H.20), we have as the required elements of

(9.H.21)

where the ψ-weights are obtained from the recursion of Equation (4.4.7) on page 79,
and γk , the autocovariance function for the {Zt} process, is obtained as in Appendix C
on page 85.

The variance  can be removed from the problem by dividing  by . The
prediction error variance vt is then replaced by  in the log-likelihood of Equation
(9.H.17), and we set in Equation (9.H.8). Dropping unneeded constants, we get
the new log-likelihood

(9.H.22)

which can be minimized analytically with respect to . We obtain

(9.H.23)

Substituting this back into Equation (9.H.22), we now find that

(9.H.24)

which must be minimized numerically with respect to φ1, φ2,…, φp, θ1, θ2,…, θq, and
. Having done so, we return to Equation (9.H.23) to estimate . The function

defined by Equation (9.H.24) is sometimes called the concentrated log-likelihood
function.
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