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CHAPTER 10

SEASONAL MODELS

In Chapter 3, we saw how seasonal deterministic trends might be modeled. However, in
many areas in which time series are used, particularly business and economics, the
assumption of any deterministic trend is quite suspect even though cyclical tendencies
are very common in such series.

Here is an example: Levels of carbon dioxide (CO2) are monitored at several sites
around the world to investigate atmospheric changes. One of the sites is at Alert, North-
west Territories, Canada, near the Arctic Circle.

Exhibit 10.1 displays the monthly CO2 levels from January 1994 through Decem-
ber 2004. There is a strong upward trend but also a seasonality that can be seen better in
the more detailed Exhibit 10.2, where only the last few years are graphed using monthly
plotting symbols.

Exhibit 10.1 Monthly Carbon Dioxide Levels at Alert, NWT, Canada

> data(co2)
> win.graph(width=4.875,height=3,pointsize=8)
> plot(co2,ylab='CO2')
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As we see in the displays, carbon dioxide levels are higher during the winter
months and much lower in the summer. Deterministic seasonal models such as seasonal
means plus linear time trend or sums of cosine curves at various frequencies plus linear
time trend as we investigated in Chapter 3 could certainly be considered here. But we
discover that such models do not explain the behavior of this time series. For this series
and many others, it can be shown that the residuals from a seasonal means plus linear
time trend model are highly autocorrelated at many lags.† In contrast, we will see that
the stochastic seasonal models developed in this chapter do work well for this series.

Exhibit 10.2 Carbon Dioxide Levels with Monthly Symbols

> plot(window(co2,start=c(2000,1)),ylab='CO2')
> Month=c('J','F','M','A','M','J','J','A','S','O','N','D')
> points(window(co2,start=c(2000,1)),pch=Month)

10.1 Seasonal ARIMA Models

We begin by studying stationary models and then consider nonstationary generalizations
in Section 10.3. We let s denote the known seasonal period; for monthly series s = 12
and for quarterly series s = 4.

Consider the time series generated according to

Notice that

but that

† We ask you to verify this in Exercise 10.8.
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It is easy to see that such a series is stationary and has nonzero autocorrelations only at
lag 12.

Generalizing these ideas, we define a seasonal MA(Q) model of order Q with sea-
sonal period s by

(10.1.1)

with seasonal MA characteristic polynomial

(10.1.2)

It is evident that such a series is always stationary and that the autocorrelation function
will be nonzero only at the seasonal lags of s, 2s, 3s,…, Qs. In particular,

(10.1.3)

(Compare this with Equation (4.2.5) on page 65 for the nonseasonal MA process.) For
the model to be invertible, the roots of Θ(x) = 0 must all exceed 1 in absolute value.

It is useful to note that the seasonal MA(Q) model can also be viewed as a special
case of a nonseasonal MA model of order q = Qs but with all θ-values zero except at the
seasonal lags s, 2s, 3s,…, Qs.

Seasonal autoregressive models can also be defined. Consider

(10.1.4)

where |Φ| < 1 and et is independent of Yt − 1, Yt − 2,… . It can be shown that |Φ| < 1
ensures stationarity. Thus it is easy to argue that E(Yt) = 0; multiplying Equation
(10.1.4) by Yt − k , taking expectations, and dividing by γ0 yields

(10.1.5)

Clearly

More generally,

(10.1.6)

Furthermore, setting k = 1 and then k = 11 in Equation (10.1.5) and using ρk = ρ−k gives
us

which implies that ρ1 = ρ11 = 0. Similarly, one can show that ρk = 0 except at the sea-
sonal lags 12, 24, 36,… . At those lags, the autocorrelation function decays exponen-
tially like an AR(1) model.

Cov Yt Yt 12–,( ) Cov et Θet 12–– et 12– Θet 24––,( )=

Θσe
2–=
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ρks

Θk– Θ1Θk 1+ Θ2Θk 2+
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2 … ΘQ
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-------------------------------------------------------------------------------------------------------------  for k 1 2 … Q, , ,= =

Yt ΦYt 12– et+=
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With this example in mind, we define a seasonal AR(P) model of order P and
seasonal period s by

(10.1.7)

with seasonal characteristic polynomial

(10.1.8)

As always, we require et to be independent of Yt − 1, Yt − 2,…, and, for stationarity, that
the roots of Φ(x) = 0 be greater than 1 in absolute value. Again, Equation (10.1.7) can be
seen as a special AR(p) model of order p = Ps with nonzero φ-coefficients only at the
seasonal lags s, 2s, 3s,…, Ps.

It can be shown that the autocorrelation function is nonzero only at lags s, 2s, 3s,
…, where it behaves like a combination of decaying exponentials and damped sine func-
tions. In particular, Equations (10.1.4), (10.1.5), and (10.1.6) easily generalize to the
general seasonal AR(1) model to give

(10.1.9)

with zero correlation at other lags.

10.2 Multiplicative Seasonal ARMA Models

Rarely shall we need models that incorporate autocorrelation only at the seasonal lags.
By combining the ideas of seasonal and nonseasonal ARMA models, we can develop
parsimonious models that contain autocorrelation for the seasonal lags but also for low
lags of neighboring series values.

Consider a model whose MA characteristic polynomial is given by

Multiplying out, we have . Thus the corresponding time series
satisfies

(10.2.1)

For this model, we can check that the autocorrelation function is nonzero only at lags 1,
11, 12, and 13. We find

(10.2.2)

(10.2.3)

(10.2.4)

and

Yt Φ1Yt s– Φ2Yt 2s–
… ΦPYt Ps– et+ + + +=
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1 θ2+
---------------–=
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(10.2.5)

Exhibit 10.3 displays the autocorrelation functions for the model of Equation (10.2.1)
with θ = ±0.5 and Θ = −0.8 as given by Equations (10.2.2)–(10.2.5).

Exhibit 10.3 Autocorrelations from Equations (10.2.2)-(10.2.5)

Of course, we could also introduce both short-term and seasonal autocorrelations
by defining an MA model of order 12 with only θ1 and θ12 nonzero. We shall see in the
next section that the “multiplicative” model arises quite naturally for nonstationary
models that entail differencing.

In general, then, we define a multiplicative seasonal ARMA(p,q)×(P,Q)s model
with seasonal period s as a model with AR characteristic polynomial φ(x)Φ(x) and MA
characteristic polynomial θ(x)Θ(x), where

(10.2.6)

and

(10.2.7)

The model may also contain a constant term θ0. Note once more that we have just a spe-
cial ARMA model with AR order p + Ps and MA order q + Qs, but the coefficients are
not completely general, being determined by only p + P + q + Q coefficients. If s = 12,
p + P + q + Q will be considerably smaller than p + Ps + q + Qs and will allow a much
more parsimonious model.

As another example, suppose P = q =1 and p = Q = 0 with s = 12. The model is then

(10.2.8)
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Using our standard techniques, we find that

(10.2.9)

and
(10.2.10)

After considering the equations implied by various choices for k, we arrive at

(10.2.11)

with autocorrelations for all other lags equal to zero.
Exhibit 10.4 displays the autocorrelation functions for two of these seasonal

ARIMA processes with period 12: one with Φ = 0.75 and θ = 0.4, the other with Φ =
0.75 and θ = −0.4. The shape of these autocorrelations is somewhat typical of the sam-
ple autocorrelation functions for numerous seasonal time series. The even simpler auto-
correlation function given by Equations (10.2.3), (10.2.4), and (10.2.5) and displayed in
Exhibit 10.3 also seems to occur frequently in practice (perhaps after differencing).

Exhibit 10.4 Autocorrelation Functions from Equation (10.2.11)
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10.3 Nonstationary Seasonal ARIMA Models

An important tool in modeling nonstationary seasonal processes is the seasonal differ-
ence. The seasonal difference of period s for the series {Yt} is denoted ∇sYt and is
defined as

(10.3.1)

For example, for monthly series we consider the changes from January to January, Feb-
ruary to February, and so forth for successive years. Note that for a series of length n,
the seasonal difference series will be of length n − s; that is, s data values are lost due to
seasonal differencing.

As an example where seasonal differencing is appropriate, consider a process gen-
erated according to

(10.3.2)

with
(10.3.3)

where {et} and {εt} are independent white noise series. Here {St} is a “seasonal random
walk,” and if , {St} would model a slowly changing seasonal component.

Due to the nonstationarity of {St}, clearly {Yt} is nonstationary. However, if we sea-
sonally difference {Yt}, as given in Equation (10.3.1), we find

(10.3.4)

An easy calculation shows that ∇sYt is stationary and has the autocorrelation function of
an MA(1)s model.

The model described by Equations (10.3.2) and (10.3.3) could also be generalized
to account for a nonseasonal, slowly changing stochastic trend. Consider

(10.3.5)

with
(10.3.6)

and
(10.3.7)

where {et}, {εt}, and {ξt} are mutually independent white noise series. Here we take
both a seasonal difference and an ordinary nonseasonal difference to obtain†

† It should be noted that ∇sYt will in fact be stationary and ∇∇sYt will be noninvertible. We
use Equations (10.3.5), (10.3.6), and (10.3.7) merely to help motivate multiplicative sea-
sonal ARIMA models.

∇sYt Yt Yt s––=

Yt St et+=

St St s– εt+=

σε σe«

∇sYt St St s–– et et s––+=

εt et et s––+=

Yt Mt St et+ +=

St St s– εt+=

Mt Mt 1– ξt+=
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(10.3.8)

The process defined here is stationary and has nonzero autocorrelation only at lags 1,
s − 1, s, and s + 1, which agrees with the autocorrelation structure of the multiplicative
seasonal model ARMA(0,1)×(0,1) with seasonal period s.

These examples lead to the definition of nonstationary seasonal models. A process
{Yt} is said to be a multiplicative seasonal ARIMA model with nonseasonal (regular)
orders p, d, and q, seasonal orders P, D, and Q, and seasonal period s if the differenced
series

(10.3.9)

satisfies an ARMA(p,q)×(P,Q)s model with seasonal period s.† We say that {Yt} is an
ARIMA(p,d,q)×(P,D,Q)s model with seasonal period s.

Clearly, such models represent a broad, flexible class from which to select an
appropriate model for a particular time series. It has been found empirically that many
series can be adequately fit by these models, usually with a small number of parameters,
say three or four.

10.4 Model Specification, Fitting, and Checking

Model specification, fitting, and diagnostic checking for seasonal models follow the
same general techniques developed in Chapters 6, 7, and 8. Here we shall simply high-
light the application of these ideas specifically to seasonal models and pay special atten-
tion to the seasonal lags.

Model Specification

As always, a careful inspection of the time series plot is the first step. Exhibit 10.1 on
page 227 displays monthly carbon dioxide levels in northern Canada. The upward trend
alone would lead us to specify a nonstationary model. Exhibit 10.5 shows the sample
autocorrelation function for that series. The seasonal autocorrelation relationships are
shown quite prominently in this display. Notice the strong correlation at lags 12, 24, 36,
and so on. In addition, there is substantial other correlation that needs to be modeled.

† Using the backshift operator notation of Appendix D, page 106, we may write the general
ARIMA(p,d,q)×(P,D,Q)s model as φ(B)Φ(B)∇d∇s

DYt = θ(B)Θ(B)et.

∇∇sYt ∇ Mt Mt s–– εt et et s––+ +( )=

ξt εt et+ +( ) εt 1– et 1–+( )– ξt s– et s–+( )– et s– 1–+=

Wt ∇d∇s
DYt=
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Exhibit 10.5 Sample ACF of CO2 Levels

> acf(as.vector(co2),lag.max=36)

Exhibit 10.6 shows the time series plot of the CO2 levels after we take a first differ-
ence.

Exhibit 10.6 Time Series Plot of the First Differences of CO2 Levels

> plot(diff(co2),ylab='First Difference of CO2',xlab='Time')

The general upward trend has now disappeared but the strong seasonality is still
present, as evidenced by the behavior shown in Exhibit 10.7. Perhaps seasonal differ-
encing will bring us to a series that may be modeled parsimoniously.
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Exhibit 10.7 Sample ACF of First Differences of CO2 Levels

> acf(as.vector(diff(co2)),lag.max=36)

Exhibit 10.8 displays the time series plot of the CO2 levels after taking both a first
difference and a seasonal difference. It appears that most, if not all, of the seasonality is
gone now.

Exhibit 10.8 Time Series Plot of First and Seasonal Differences of CO2

> plot(diff(diff(co2),lag=12),xlab='Time', 
ylab='First and Seasonal Difference of CO2')

Exhibit 10.9 confirms that very little autocorrelation remains in the series after
these two differences have been taken. This plot also suggests that a simple model
which incorporates the lag 1 and lag 12 autocorrelations might be adequate.

We will consider specifying the multiplicative, seasonal ARIMA(0,1,1)×(0,1,1)12
model
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(10.4.10)

which incorporates many of these requirements. As usual, all models are tentative and
subject to revision at the diagnostics stage of model building.

Exhibit 10.9 Sample ACF of First and Seasonal Differences of CO2

> acf(as.vector(diff(diff(co2),lag=12)),lag.max=36,ci.type='ma')

Model Fitting

Having specified a tentative seasonal model for a particular time series, we proceed to
estimate the parameters of that model as efficiently as possible. As we have remarked
earlier, multiplicative seasonal ARIMA models are just special cases of our general
ARIMA models. As such, all of our work on parameter estimation in Chapter 7 carries
over to the seasonal case.

Exhibit 10.10 gives the maximum likelihood estimates and their standard errors for
the ARIMA(0,1,1)×(0,1,1)12 model for CO2 levels.

Exhibit 10.10 Parameter Estimates for the CO2 Model

> m1.co2=arima(co2,order=c(0,1,1),seasonal=list(order=c(0,1,1), 
period=12))

> m1.co2

Coefficient θ Θ

Estimate 0.5792 0.8206

Standard error 0.0791 0.1137

 = 0.5446: log-likelihood = −139.54, AIC = 283.08
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The coefficient estimates are all highly significant, and we proceed to check further on
this model.

Diagnostic Checking

To check the estimated the ARIMA(0,1,1)×(0,1,1)12 model, we first look at the time
series plot of the residuals. Exhibit 10.11 gives this plot for standardized residuals.
Other than some strange behavior in the middle of the series, this plot does not suggest
any major irregularities with the model, although we may need to investigate the model
further for outliers, as the standardized residual at September 1998 looks suspicious. We
investigate this further in Chapter 11.

Exhibit 10.11 Residuals from the ARIMA(0,1,1)×(0,1,1)12 Model

> plot(window(rstandard(m1.co2),start=c(1995,2)), 
ylab='Standardized Residuals',type='o')

> abline(h=0)

To look further, we graph the sample ACF of the residuals in Exhibit 10.12. The
only “statistically significant” correlation is at lag 22, and this correlation has a value of
only −0.17, a very small correlation. Furthermore, we can think of no reasonable inter-
pretation for dependence at lag 22. Finally, we should not be surprised that one autocor-
relation out of the 36 displayed is statistically significant. This could easily happen by
chance alone. Except for marginal significance at lag 22, the model seems to have cap-
tured the essence of the dependence in the series.
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Exhibit 10.12 ACF of Residuals from the ARIMA(0,1,1)×(0,1,1)12 Model

> acf(as.vector(window(rstandard(m1.co2),start=c(1995,2))), 
lag.max=36)

The Ljung-Box test for this model gives a chi-squared value of 25.59 with 22
degrees of freedom, leading to a p-value of 0.27—a further indication that the model
has captured the dependence in the time series.

Next we investigate the question of normality of the error terms via the residuals.
Exhibit 10.13 displays the histogram of the residuals. The shape is somewhat
“bell-shaped” but certainly not ideal. Perhaps a quantile-quantile plot will tell us more.

Exhibit 10.13 Residuals from the ARIMA(0,1,1)×(0,1,1)12 Model

> win.graph(width=3, height=3,pointsize=8)
> hist(window(rstandard(m1.co2),start=c(1995,2)), 

xlab='Standardized Residuals')
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Exhibit 10.14 displays the QQ-normal plot for the residuals.

Exhibit 10.14 Residuals: ARIMA(0,1,1)×(0,1,1)12 Model

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(window(rstandard(m1.co2),start=c(1995,2)))
> qqline(window(rstandard(m1.co2),start=c(1995,2)))

Here we again see the one outlier in the upper tail, but the Shapiro-Wilk test of nor-
mality has a test statistic of W = 0.982, leading to a p-value of 0.11, and normality is not
rejected at any of the usual significance levels.

As one further check on the model, we consider overfitting with an ARIMA(0,1,2)
×(0,1,1)12 model with the results shown in Exhibit 10.15.

Exhibit 10.15 ARIMA(0,1,2)×(0,1,1)12 Overfitted Model

> m2.co2=arima(co2,order=c(0,1,2),seasonal=list(order=c(0,1,1), 
period=12))

> m2.co2

When we compare these results with those reported in Exhibit 10.10 on page 237,
we see that the estimates of θ1 and Θ have changed very little—especially when the size
of the standard errors is taken into consideration. In addition, the estimate of the new
parameter, θ2, is not statistically different from zero. Note also that the estimate and
the log-likelihood have not changed much while the AIC has actually increased. 

The ARIMA(0,1,1)×(0,1,1)12 model was popularized in the first edition of the sem-
inal book of Box and Jenkins (1976) when it was found to characterize the logarithms of

Coefficient θ1 θ2 Θ

Estimate 0.5714 0.0165 0.8274

Standard error 0.0897 0.0948 0.1224

 = 0.5427: log-likelihood = −139.52, AIC = 285.05
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a monthly airline passenger time series. This model has come to be known as the airline
model. We ask you to analyze the original airline data in the exercises.

10.5 Forecasting Seasonal Models

Computing forecasts with seasonal ARIMA models is, as expected, most easily carried
out recursively using the difference equation form for the model, as in Equations
(9.3.28), (9.3.29) on page 199 and (9.3.40) on page 201. For example, consider the
model ARIMA(0,1,1)×(1,0,1)12.

(10.5.1)

which we rewrite as

(10.5.2)

The one-step-ahead forecast from origin t is then

(10.5.3)

and the next one is

(10.5.4)

and so forth. The noise terms et − 13, et − 12, et − 11,…, et (as residuals) will enter into the
forecasts for lead times l = 1, 2,…, 13, but for l > 13 the autoregressive part of the model
takes over and we have

(10.5.5)

To understand the general nature of the forecasts, we consider several special cases.

Seasonal AR(1)12

The seasonal AR(1)12 model is

(10.5.6)

Clearly, we have

(10.5.7)

However, iterating back on l, we can also write

(10.5.8)

where k and r are defined by l = 12k + r + 1 with 0 ≤ r < 12 and k = 0, 1, 2,… . In other
words, k is the integer part of (l − 1)/12 and r/12 is the fractional part of (l − 1)/12. If our
last observation is in December, then the next January value is forecast as Φ times the
last observed January value, February is forecast as Φ times the last observed February

Yt Yt 1–– Φ Yt 12– Yt 13––( ) et θet 1–– Θet 12–– θΘet 13–+ +=

Yt Yt 1– ΦYt 12– ΦYt 13–– et θet 1–– Θet 12–– θΘet 13–+ + +=

Ŷ t 1( ) Yt ΦYt 11– ΦYt 12–– θet– Θet 11–– θΘet 12–+ +=

Ŷ t 2( ) Ŷ t 1( ) ΦYt 10– ΦYt 11–– Θet 10–– θΘet 11–+ +=

Ŷ t l( ) Ŷ t l 1–( ) ΦŶ t l 12–( ) ΦŶ t l 13–( )  for  l 13>–+=

Yt ΦYt 12– et+=

Ŷ t l( ) ΦŶ t l 12–( )=

Ŷ t l( ) Φ k 1+ Yt r 11–+=
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value, and so on. Two Januarys ahead is forecast as Φ2 times the last observed January.
Looking just at January values, the forecasts into the future will decay exponentially at a
rate determined by the magnitude of Φ. All of the forecasts for each month will behave
similarly but with different initial forecasts depending on the particular month under
consideration.

Using Equation (9.3.38) on page 201 and the fact that the ψ-weights are nonzero
only for multiple of 12, namely,

(10.5.9)

we have that the forecast error variance can be written as

(10.5.10)

where, as before, k is the integer part of (l − 1)/12.

Seasonal MA(1)12

For the seasonal MA(1)12 model, we have

(10.5.11)

In this case, we see that

(10.5.12)

and

(10.5.13)

Here we obtain different forecasts for the months of the first year, but from then on all
forecasts are given by the process mean.

For this model, ψ0 = 1, ψ12 = −Θ, and ψj = 0 otherwise. Thus, from Equation
(9.3.38) on page 201, 

(10.5.14)

ARIMA(0,0,0)×(0,1,1)12

The ARIMA(0,0,0)×(0,1,1)12 model is

(10.5.15)

ψj
Φ j 12/ for j 0 12 24 …, , ,=

0         otherwise⎩
⎨
⎧

=

Var et l( )( ) 1 Φ2k 2+–
1 Φ2–

-------------------------- σe
2=

Yt et Θet 12–– θ0+=

Ŷ t 1( ) Θet 11–– θ0+=

Ŷ t 2( ) Θet 10–– θ0+=
...

Ŷ t 12( ) Θet– θ0+=
⎭
⎪
⎪
⎬
⎪
⎪
⎫

Ŷ t l( ) θ0  for  l 12>=

Var et l( )( )
σe

2 1 l 12≤ ≤

1 Θ2+( )σe
2 12 l<⎩

⎨
⎧

=

Yt Yt 12–– et Θet 12––=
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or

so that

(10.5.16)

and then

(10.5.17)

It follows that all Januarys will forecast identically, all Februarys identically, and so
forth.

If we invert this model, we find that

Consequently, we can write

(10.5.18)

From this representation, we see that the forecast for each January is an exponentially
weighted moving average of all observed Januarys, and similarly for each of the other
months.

In this case, we have ψj = 1 − Θ for j = 12, 24,…, and zero otherwise. The forecast
error variance is then

(10.5.19)

where k is the integer part of (l − 1)/12.

ARIMA(0,1,1)×(0,1,1)12

For the ARIMA(0,1,1)×(0,1,1)12 model

(10.5.20)

Y
t l+

Y
t l 12–+
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t l+

Θe
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–+=
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the forecasts satisfy

(10.5.21)

and

(10.5.22)

To understand the general pattern of these forecasts, we can use the representation

(10.5.23)

where the A’s and B’s are dependent on Yt, Yt − 1,…, or, alternatively, determined from
the initial forecasts , ,…, . This result follows from the general the-
ory of difference equations and involves the roots of (1 − x)(1 − x12) = 0.

Notice that Equation (10.5.23) reveals that the forecasts are composed of a linear
trend in the lead time plus a sum of periodic components. However, the coefficients Ai
and Bij are more dependent on recent data than on past data and will adapt to changes in
the process as our forecast origin changes and the forecasts are updated. This is in stark
contrast to forecasting with deterministic time trend plus seasonal components, where
the coefficients depend rather equally on both recent and past data and remain the same
for all future forecasts.

Prediction Limits

Prediction limits are obtained precisely as in the nonseasonal case. We illustrate this
with the carbon dioxide time series. Exhibit 10.16 shows the forecasts and 95% forecast
limits for a lead time of two years for the ARIMA(0,1,1)×(0,1,1)12 model that we fit.
The last two years of observed data are also shown. The forecasts mimic the stochastic
periodicity in the data quite well, and the forecast limits give a good feeling for the pre-
cision of the forecasts.
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10.5  Forecasting Seasonal Models 245

Exhibit 10.16 Forecasts and Forecast Limits for the CO2 Model

> win.graph(width=4.875,height=3,pointsize=8)
> plot(m1.co2,n1=c(2003,1),n.ahead=24,xlab='Year',type='o', 

ylab='CO2 Levels')

Exhibit 10.17 displays the last year of observed data and forecasts out four years.
At this lead time, it is easy to see that the forecast limits are getting wider, as there is
more uncertainty in the forecasts.

Exhibit 10.17 Long-Term Forecasts for the CO2 Model

> plot(m1.co2,n1=c(2004,1),n.ahead=48,xlab='Year',type='b', 
ylab='CO2 Levels')
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10.6 Summary

Multiplicative seasonal ARIMA models provide an economical way to model time
series whose seasonal tendencies are not as regular as we would have with a determinis-
tic seasonal trend model which we covered in Chapter 3. Fortunately, these models are
simply special ARIMA models so that no new theory is needed to investigate their prop-
erties. We illustrated the special nature of these models with a thorough modeling of an
actual time series.

EXERCISES

10.1 Based on quarterly data, a seasonal model of the form

has been fit to a certain time series.
(a) Find the first four ψ-weights for this model.
(b) Suppose that θ1 = 0.5, θ2 = −0.25, and σe = 1. Find forecasts for the next four

quarters if data for the last four quarters are

(c) Find 95% prediction intervals for the forecasts in part (b).
10.2 An AR model has AR characteristic polynomial

(a) Is the model stationary?
(b) Identify the model as a certain seasonal ARIMA model.

10.3 Suppose that {Yt} satisfies

where St is deterministic and periodic with period s and {Xt} is a seasonal
ARIMA(p,0,q)×(P,1,Q)s series. What is the model for Wt = Yt −Yt − s?

10.4 For the seasonal model with |Φ| < 1, find γ0 and ρk.
10.5 Identify the following as certain multiplicative seasonal ARIMA models:

(a) .
(b) .

10.6 Verify Equations (10.2.11) on page 232.

Quarter I II III IV

Series 25 20 25 40

Residual 2 1 2 3

Yt Yt 4– et θ1et 1–– θ2et 2––+=

1 1.6x– 0.7x2+( ) 1 0.8x12–( )

Yt a bt St Xt+ + +=

Yt ΦYt 4– ee θet 1––+=

Yt 0.5Yt 1– Yt 4– 0.5Yt 5–– et 0.3et 1––+ +=
Yt Yt 1– Yt 12– Yt 13– et 0.5et 1–– 0.5et 12–– 0.25et 13–+ +–+=
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10.7 Suppose that the process {Yt} develops according to  with Yt = et
for t = 1, 2, 3, and 4.
(a) Find the variance function for {Yt}.
(b) Find the autocorrelation function for {Yt}.
(c) Identify the model for {Yt} as a certain seasonal ARIMA model.

10.8 Consider the Alert, Canada, monthly carbon dioxide time series shown in Exhibit
10.1 on page 227. The data are in the file named co2.
(a) Fit a deterministic seasonal means plus linear time trend model to these data.

Are any of the regression coefficients “statistically significant”?
(b) What is the multiple R-squared for this model?
(c) Now calculate the sample autocorrelation of the residuals from this model.

Interpret the results.
10.9 The monthly airline passenger time series, first investigated in Box and Jenkins

(1976), is considered a classic time series. The data are in the file named airpass.
(a) Display the time series plots of both the original series and the logarithms of

the series. Argue that taking logs is an appropriate transformation.
(b) Display and interpret the time series plots of the first difference of the logged

series.
(c) Display and interpret the time series plot of the seasonal difference of the first

difference of the logged series.
(d) Calculate and interpret the sample ACF of the seasonal difference of the first

difference of the logged series.
(e) Fit the “airline model” (ARIMA(0,1,1)×(0,1,1)12 ) to the logged series.
(f) Investigate diagnostics for this model, including autocorrelation and normality

of the residuals.
(g) Produce forecasts for this series with a lead time of two years. Be sure to

include forecast limits.
10.10 Exhibit 5.8 on page 99 displayed the monthly electricity generated in the United

States. We argued there that taking logarithms was appropriate for modeling.
Exhibit 5.10 on page 100 showed the time series plot of the first differences for
this series. The filename is electricity.
(a) Calculate the sample ACF of the first difference of the logged series. Is the

seasonality visible in this display?
(b) Plot the time series of seasonal difference and first difference of the logged

series. Does a stationary model seem appropriate now?
(c) Display the sample ACF of the series after a seasonal difference and a first

difference have been taken of the logged series. What model(s) might you
consider for the electricity series?

Yt Yt 4– et+=
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10.11 The quarterly earnings per share for 1960–1980 of the U.S. company Johnson &
Johnson, are saved in the file named JJ. 
(a) Plot the time series and also the logarithm of the series. Argue that we should

transform by logs to model this series.
(b) The series is clearly not stationary. Take first differences and plot that series.

Does stationarity now seem reasonable?
(c) Calculate and graph the sample ACF of the first differences. Interpret the

results.
(d) Display the plot of seasonal differences and the first differences. Interpret the

plot. Recall that for quarterly data, a season is of length 4.
(e) Graph and interpret the sample ACF of seasonal differences with the first dif-

ferences.
(f) Fit the model ARIMA(0,1,1)×(0,1,1)4, and assess the significance of the esti-

mated coefficients.
(g) Perform all of the diagnostic tests on the residuals.
(h) Calculate and plot forecasts for the next two years of the series. Be sure to

include forecast limits.
10.12 The file named boardings contains monthly data on the number of people who

boarded transit vehicles (mostly light rail trains and city buses) in the Denver,
Colorado, region for August 2000 through December 2005.
(a) Produce the time series plot for these data. Be sure to use plotting symbols

that will help you assess seasonality. Does a stationary model seem reason-
able?

(b) Calculate and plot the sample ACF for this series. At which lags do you have
significant autocorrelation?

(c) Fit an ARMA(0,3)×(1,0)12 model to these data. Assess the significance of the
estimated coefficients.

(d) Overfit with an ARMA(0,4)×(1,0)12 model. Interpret the results.


