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CHAPTER 4

MODELS FOR STATIONARY TIME SERIES

This chapter discusses the basic concepts of a broad class of parametric time series
models—the autoregressive moving average (ARMA) models. These models have
assumed great importance in modeling real-world processes.

4.1 General Linear Processes

We will always let {Yt} denote the observed time series. From here on we will also let
{et} represent an unobserved white noise series, that is, a sequence of identically distrib-
uted, zero-mean, independent random variables. For much of our work, the assumption
of independence could be replaced by the weaker assumption that the {et} are uncorre-
lated random variables, but we will not pursue that slight generality.

A general linear process, {Yt}, is one that can be represented as a weighted linear
combination of present and past white noise terms as

(4.1.1)

If the right-hand side of this expression is truly an infinite series, then certain conditions
must be placed on the ψ-weights for the right-hand side to be meaningful mathemati-
cally. For our purposes, it suffices to assume that

(4.1.2)

We should also note that since {et} is unobservable, there is no loss in the generality of
Equation (4.1.2) if we assume that the coefficient on et is 1; effectively, ψ0 = 1.

An important nontrivial example to which we will return often is the case where the
ψ’s form an exponentially decaying sequence

where φ is a number strictly between −1 and +1. Then

For this example,

Yt et ψ1et 1– ψ2et 2–
…+ + +=

ψi
2 ∞<

i 1=

∞
∑

ψj φ j=

Yt et φet 1– φ2et 2–
…+ + +=

E Yt( ) E et φet 1– φ2et 2–
…+ + +( ) 0= =
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so that {Yt} has a constant mean of zero. Also,

Furthermore,

Thus

In a similar manner, we can find 

and thus

(4.1.3)

It is important to note that the process defined in this way is stationary—the autoco-
variance structure depends only on time lag and not on absolute time. For a general lin-
ear process, , calculations similar to those done above
yield the following results:

(4.1.4)

with ψ0 = 1. A process with a nonzero mean μ may be obtained by adding μ to the
right-hand side of Equation (4.1.1). Since the mean does not affect the covariance prop-
erties of a process, we assume a zero mean until we begin fitting models to data.

Var Yt( ) Var et φet 1– φ2et 2–
…+ + +( )=

Var et( ) φ2Var et 1–( ) φ4Var et 2–( ) …+ + +=

σe
2 1 φ2 φ4 …+ + +( )=

σe
2

1 φ2–
--------------  (by summing a geometric series)=

Cov Yt Yt 1–,( ) Cov et φet 1– φ2et 2–
…+ + + et 1– φet 2– φ2et 3–

…+ + +,( )=

Cov φet 1– et 1–,( ) Cov φ2et 2– φet 2–,( ) …+ +=

φσe
2 φ3σe

2 φ5σe
2 …+ + +=

φσe
2 1 φ2 φ4 …+ + +( )=

φσe
2

1 φ2–
--------------  (again summing a geometric series)=

Corr Yt Yt 1–,( )
φσe

2

1 φ2–
--------------

σe
2

1 φ2–
--------------⁄ φ= =

Cov Yt Yt k–,( )
φkσe

2

1 φ2–
--------------=

Corr Yt Yt k–,( ) φk=

Yt et ψ1et 1– ψ2et 2–
…+ + +=

E Yt( ) 0= γk Cov Yt Yt k–,( ) σe
2 ψiψi k+

i 0=

∞
∑= = k 0≥
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4.2 Moving Average Processes

In the case where only a finite number of the ψ-weights are nonzero, we have what is
called a moving average process. In this case, we change notation† somewhat and write

(4.2.1)

We call such a series a moving average of order q and abbreviate the name to MA(q).
The terminology moving average arises from the fact that Yt is obtained by applying the
weights 1, −θ1, −θ2, ... , −θq to the variables et, et − 1, et − 2,…,  et − q and then moving the
weights and applying them to et + 1, et, et − 1,... , et − q + 1 to obtain Yt+1 and so on. Mov-
ing average models were first considered by Slutsky (1927) and Wold (1938).

The First-Order Moving Average Process

We consider in detail the simple but nevertheless important moving average process of
order 1, that is, the MA(1) series. Rather than specialize the formulas in Equation
(4.1.4), it is instructive to rederive the results. The model is . Since
only one θ is involved, we drop the redundant subscript 1. Clearly = 0
and  . Now

and

since there are no e’s with subscripts in common between Yt and Yt − 2. Similarly,
 whenever ; that is, the process has no correlation beyond lag

1. This fact will be important later when we need to choose suitable models for real
data.

In summary, for an MA(1) model ,

(4.2.2)

† The reason for this change will be evident later on. Some statistical software, for example
R, uses plus signs before the thetas. Check with yours to see which convention it uses.

Yt et θ1et 1–– θ2et 2–– … θq– et q––=

Yt et θet 1––=
E Yt( )

Var Yt( ) σe
2 1 θ2+( )=

Cov Yt Yt 1–,( ) Cov et θet 1–– et 1– θet 2––,( )=

Cov θet 1–– et 1–,( ) θσe
2–==

Cov Yt Yt 2–,( ) Cov et θet 1–– et 2– θet 3––,( )=

0=

Cov Yt Yt k–,( ) 0= k 2≥

Yt et θet 1––=

E Yt( ) 0=

γ0 Var Yt( ) σe
2 1 θ2+( )= =

γ1 θσe
2–=

ρ1 θ–( ) 1 θ2+( )⁄=

γk ρk 0     for k 2≥= =
⎭
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎫
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Some numerical values for ρ1 versus θ in Equation (4.2.2) help illustrate the possi-
bilities. Note that the ρ1 values for negative θ can be obtained by simply negating the
value given for the corresponding positive θ-value.

A calculus argument shows that the largest value that ρ1 can attain is ρ1 = ½ when
θ = −1 and the smallest value is ρ1 = −½, which occurs when θ = +1 (see Exercise 4.3).
Exhibit 4.1 displays a graph of the lag 1 autocorrelation values for θ ranging from −1 to
+1.

Exhibit 4.1 Lag 1 Autocorrelation of an MA(1) Process for Different θ

Exercise 4.4 asks you to show that when any nonzero value of θ is replaced by 1/θ,
the same value for ρ1 is obtained. For example, ρ1 is the same for θ = ½ as for θ = 1/(½)
= 2. If we knew that an MA(1) process had ρ1 = 0.4, we still could not tell the precise
value of θ. We will return to this troublesome point when we discuss invertibility in
Section 4.5 on page 79.

Exhibit 4.2 shows a time plot of a simulated MA(1) series with θ = −0.9 and nor-
mally distributed white noise. Recall from Exhibit 4.1 that ρ1 = 0.4972 for this model;
thus there is moderately strong positive correlation at lag 1. This correlation is evident
in the plot of the series since consecutive observations tend to be closely related. If an
observation is above the mean level of the series, then the next observation also tends to
be above the mean. The plot is relatively smooth over time, with only occasional large
fluctuations.

0.1 −0.099 0.6 −0.441

0.2 −0.192 0.7 −0.470

0.3 −0.275 0.8 −0.488
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Exhibit 4.2 Time Plot of an MA(1) Process with θ = −0.9

> win.graph(width=4.875,height=3,pointsize=8)
> data(ma1.2.s); plot(ma1.2.s,ylab=expression(Y[t]),type='o')

The lag 1 autocorrelation is even more apparent in Exhibit 4.3, which plots Yt ver-
sus Yt−1. Note the moderately strong upward trend in this plot.

Exhibit 4.3 Plot of Yt versus Yt – 1 for MA(1) Series in Exhibit 4.2

> win.graph(width=3,height=3,pointsize=8)
> plot(y=ma1.2.s,x=zlag(ma1.2.s),ylab=expression(Y[t]), 

xlab=expression(Y[t-1]),type='p')
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The plot of Yt versus Yt − 2 in Exhibit 4.4 gives a strong visualization of the zero
autocorrelation at lag 2 for this model.

Exhibit 4.4 Plot of Yt versus Yt – 2 for MA(1) Series in Exhibit 4.2

> plot(y=ma1.2.s,x=zlag(ma1.2.s,2),ylab=expression(Y[t]), 
xlab=expression(Y[t-2]),type='p')

A somewhat different series is shown in Exhibit 4.5. This is a simulated MA(1)
series with θ = +0.9. Recall from Exhibit 4.1 that ρ1 = −0.497 for this model; thus there
is moderately strong negative correlation at lag 1. This correlation can be seen in the
plot of the series since consecutive observations tend to be on opposite sides of the zero
mean. If an observation is above the mean level of the series, then the next observation
tends to be below the mean. The plot is quite jagged over time—especially when com-
pared with the plot in Exhibit 4.2.
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Exhibit 4.5 Time Plot of an MA(1) Process with θ = +0.9

> win.graph(width=4.875,height=3,pointsize=8)
> data(ma1.1.s)
> plot(ma1.1.s,ylab=expression(Y[t]),type='o')

The negative lag 1 autocorrelation is even more apparent in the lag plot of Exhibit
4.6.

Exhibit 4.6 Plot of Yt versus Yt – 1 for MA(1) Series in Exhibit 4.5

> win.graph(width=3, height=3,pointsize=8)
> plot(y=ma1.1.s,x=zlag(ma1.1.s),ylab=expression(Y[t]), 

xlab=expression(Y[t-1]),type='p')
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The plot of Yt versus Yt − 2 in Exhibit 4.7 displays the zero autocorrelation at lag 2
for this model.

Exhibit 4.7 Plot of Yt versus Yt−2 for MA(1) Series in Exhibit 4.5

> plot(y=ma1.1.s,x=zlag(ma1.1.s,2),ylab=expression(Y[t]), 
xlab=expression(Y[t-2]),type='p')

MA(1) processes have no autocorrelation beyond lag 1, but by increasing the order
of the process, we can obtain higher-order correlations.

The Second-Order Moving Average Process

Consider the moving average process of order 2:

Here

and
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Yt et θ1et 1–– θ2et 2––=

γ0 Var Yt( ) Var et θ1et 1–– θ2et 2––( ) 1 θ1
2 θ2

2+ +( )σe
2= = =

γ1 Cov Yt Yt 1–,( ) Cov et θ1et 1–– θ2et 2–– et 1– θ1et 2–– θ2et 3––,( )= =

Cov θ– 1et 1– et 1–,( ) Cov θ1et 2–– θ2et 2––,( )+=

θ1– θ1–( ) θ2–( )+[ ]σe
2=

θ1– θ1θ2+( )σe
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Thus, for an MA(2) process,

(4.2.3)

For the specific case , we have

and

A time plot of a simulation of this MA(2) process is shown in Exhibit 4.8. The
series tends to move back and forth across the mean in one time unit. This reflects the
fairly strong negative autocorrelation at lag 1.

Exhibit 4.8 Time Plot of an MA(2) Process with θ1 = 1 and θ2 = −0.6

> win.graph(width=4.875, height=3,pointsize=8)
> data(ma2.s); plot(ma2.s,ylab=expression(Y[t]),type='o')

γ2 Cov Yt Yt 2–,( ) Cov et θ1et 1–– θ2et 2–– et 2– θ1et 3–– θ2et 4––,( )= =

Cov θ2et 2–– et 2–,( )=

θ2σe
2–=

ρ1
θ1– θ1θ2+

1 θ1
2 θ2

2+ +
----------------------------=

ρ2
θ2–

1 θ1
2 θ2

2+ +
---------------------------=

ρk 0  for k = 3, 4,...=

Yt et et 1–– 0.6et 2–+=

ρ1
1– 1( ) 0.6–( )+

1 1( )2 0.6–( )2+ +
-------------------------------------------- 1.6–

2.36
---------- 0.678–= = =

ρ2
0.6
2.36
---------- 0.254= =
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The plot in Exhibit 4.9 reflects that negative autocorrelation quite dramatically.

Exhibit 4.9 Plot of Yt versus Yt – 1 for MA(2) Series in Exhibit 4.8

> win.graph(width=3,height=3,pointsize=8)
> plot(y=ma2.s,x=zlag(ma2.s),ylab=expression(Y[t]), 

xlab=expression(Y[t-1]),type='p')

The weak positive autocorrelation at lag 2 is displayed in Exhibit 4.10.

Exhibit 4.10 Plot of Yt versus Yt – 2 for MA(2) Series in Exhibit 4.8

> plot(y=ma2.s,x=zlag(ma2.s,2),ylab=expression(Y[t]), 
xlab=expression(Y[t-2]),type='p')
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Finally, the lack of autocorrelation at lag 3 is apparent from the scatterplot in
Exhibit 4.11.

Exhibit 4.11 Plot of Yt versus Yt – 3 for MA(2) Series in Exhibit 4.8

> plot(y=ma2.s,x=zlag(ma2.s,3),ylab=expression(Y[t]), 
xlab=expression(Y[t-3]),type='p')

The General MA(q) Process

For the general MA(q) process , similar calcu-
lations show that

(4.2.4)

and

(4.2.5)

where the numerator of ρq is just −θq. The autocorrelation function “cuts off” after lag
q; that is, it is zero. Its shape can be almost anything for the earlier lags. Another type of
process, the autoregressive process, provides models for alternative autocorrelation pat-
terns.
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γ0 1 θ1
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2 … θq
2+ + + +( )σe
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θk– θ1θk 1+ θ2θk 2+
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4.3 Autoregressive Processes

Autoregressive processes are as their name suggests—regressions on themselves. Spe-
cifically, a pth-order autoregressive process {Yt} satisfies the equation

(4.3.1)

The current value of the series Yt is a linear combination of the p most recent past values
of itself plus an “innovation” term et that incorporates everything new in the series at
time t that is not explained by the past values. Thus, for every t, we assume that et is
independent of Yt − 1, Yt − 2, Yt − 3, ... . Yule (1926) carried out the original work on
autoregressive processes.†

The First-Order Autoregressive Process

Again, it is instructive to consider the first-order model, abbreviated AR(1), in detail.
Assume the series is stationary and satisfies

(4.3.2)

where we have dropped the subscript 1 from the coefficient φ for simplicity. As usual, in
these initial chapters, we assume that the process mean has been subtracted out so that
the series mean is zero. The conditions for stationarity will be considered later.

We first take variances of both sides of Equation (4.3.2) and obtain

Solving for γ0 yields

(4.3.3)

Notice the immediate implication that  or that . Now take Equation
(4.3.2), multiply both sides by Yt − k (k = 1, 2,...), and take expected values

or

Since the series is assumed to be stationary with zero mean, and since et is indepen-
dent of Yt − k, we obtain

and so

† Recall that we are assuming that Yt has zero mean. We can always introduce a nonzero
mean by replacing Yt by Yt − μ throughout our equations.

Yt φ1Yt 1– φ2Yt 2–
… φpYt p– et+ + + +=

Yt φYt 1– et+=

γ0 φ2γ0 σe
2+=

γ0
σe

2

1 φ2–
--------------=

φ2 1< φ 1<

E Yt k– Yt( ) φE Yt k– Yt 1–( ) E etYt k–( )+=

γk φγk 1– E etYt k–( )+=

E etYt k–( ) E et( )E Yt k–( ) 0= =
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(4.3.4)

Sett ing k = 1, we get  .  With k = 2, we obtain
. Now it is easy to see that in general

(4.3.5)

and thus

(4.3.6)

Since , the magnitude of the autocorrelation function decreases exponentially
as the number of lags, k, increases. If , all correlations are positive; if

, the lag 1 autocorrelation is negative (ρ1 = φ) and the signs of successive
autocorrelations alternate from positive to negative, with their magnitudes decreasing
exponentially. Portions of the graphs of several autocorrelation functions are displayed
in Exhibit 4.12.

Exhibit 4.12 Autocorrelation Functions for Several AR(1) Models

Notice that for φ near , the exponential decay is quite slow (for example, (0.9)6 =
0.53), but for smaller φ, the decay is quite rapid (for example, (0.4)6 = 0.00410). With φ
near , the strong correlation will extend over many lags and produce a relatively

γk φγk 1–= for k = 1, 2, 3,...

γ1 φγ0 φσe
2 1 φ2–( )⁄= = γ2 =

φ2σe
2 1 φ2–( )⁄

γk φk
σe

2

1 φ2–
--------------=

ρk
γk

γ0
----- φk= = for k = 1, 2, 3,...

φ 1<
0 φ 1< <

1 φ 0< <–

2 4 6 8 10 12

−1
.0

0.
0

1.
0

Lag

ρρ k

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

−1
.0

0.
0

1.
0

Lag

ρρ k

●

●

●

●
● ● ● ● ● ● ● ●

2 4 6 8 10 12

0.
0

0.
4

0.
8

Lag

ρρ k

●

●

●

●
●

●
●

●
●

●
●

●

2 4 6 8 10 12

0.
0

0.
4

0.
8

Lag

ρρ k

●

●

●
● ● ● ● ● ● ● ● ●

φ = 0.9 φ = 0.4

φ = −0.8 φ = −0.5

1±

1±



68 Models for Stationary Time Series

smooth series if φ is positive and a very jagged series if φ is negative.
Exhibit 4.13 displays the time plot of a simulated AR(1) process with φ = 0.9.

Notice how infrequently the series crosses its theoretical mean of zero. There is a lot of
inertia in the series—it hangs together, remaining on the same side of the mean for
extended periods. An observer might claim that the series has several trends. We know
that in fact the theoretical mean is zero for all time points. The illusion of trends is due
to the strong autocorrelation of neighboring values of the series.

Exhibit 4.13 Time Plot of an AR(1) Series with φ = 0.9

> win.graph(width=4.875, height=3,pointsize=8)
> data(ar1.s); plot(ar1.s,ylab=expression(Y[t]),type='o')

The smoothness of the series and the strong autocorrelation at lag 1 are depicted in
the lag plot shown in Exhibit 4.14.
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Exhibit 4.14 Plot of Yt versus Yt − 1 for AR(1) Series of Exhibit 4.13

> win.graph(width=3, height=3,pointsize=8)
> plot(y=ar1.s,x=zlag(ar1.s),ylab=expression(Y[t]), 

xlab=expression(Y[t-1]),type='p')

This AR(1) model also has strong positive autocorrelation at lag 2, namely ρ2 =
(0.9)2 = 0.81. Exhibit 4.15 shows this quite well.

Exhibit 4.15 Plot of Yt versus Yt − 2 for AR(1) Series of Exhibit 4.13

> plot(y=ar1.s,x=zlag(ar1.s,2),ylab=expression(Y[t]), 
xlab=expression(Y[t-2]),type='p')
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Finally, at lag 3, the autocorrelation is still quite high: ρ3 = (0.9)3 = 0.729. Exhibit
4.16 confirms this for this particular series.

Exhibit 4.16 Plot of Yt versus Yt − 3 for AR(1) Series of Exhibit 4.13

> plot(y=ar1.s,x=zlag(ar1.s,3),ylab=expression(Y[t]), 
xlab=expression(Y[t-3]),type='p')

The General Linear Process Version of the AR(1) Model

The recursive definition of the AR(1) process given in Equation (4.3.2) is extremely
useful for interpretating the model. For other purposes, it is convenient to express the
AR(1) model as a general linear process as in Equation (4.1.1). The recursive definition
is valid for all t. If we use this equation with t replaced by t− 1, we get 

. Substituting this into the original expression gives

If we repeat this substitution into the past, say k − 1 times, we get

(4.3.7)

Assuming  and letting k increase without bound, it seems reasonable (this is
almost a rigorous proof) that we should obtain the infinite series representation

(4.3.8)
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This is in the form of the general linear process of Equation (4.1.1) with ,
which we already investigated in Section 4.1 on page 55. Note that this representation
reemphasizes the need for the restriction .

Stationarity of an AR(1) Process

It can be shown that, subject to the restriction that et be independent of Yt − 1, Yt − 2,
Yt − 3,… and that , the solution of the AR(1) defining recursion 
will be stationary if and only if . The requirement  is usually called the
stationarity condition for the AR(1) process (See Box, Jenkins, and Reinsel, 1994,
p. 54; Nelson, 1973, p. 39; and Wei, 2005, p. 32) even though more than stationarity is
involved. See especially Exercises 4.16, 4.18, and 4.25.

At this point, we should note that the autocorrelation function for the AR(1) process
has been derived in two different ways. The first method used the general linear process
representation leading up to Equation (4.1.3). The second method used the defining
recursion  and the development of Equations (4.3.4), (4.3.5), and
(4.3.6). A third derivation is obtained by multiplying both sides of Equation (4.3.7) by
Yt − k, taking expected values of both sides, and using the fact that et, et − 1, et − 2, ... ,
et − (k − 1) are independent of Yt − k. The second method should be especially noted since
it will generalize nicely to higher-order processes.

The Second-Order Autoregressive Process

Now consider the series satisfying

(4.3.9)

where, as usual, we assume that et is independent of Yt − 1, Yt − 2, Yt − 3, ... . To discuss
stationarity, we introduce the AR characteristic polynomial

and the corresponding AR characteristic equation

We recall that a quadratic equation always has two roots (possibly complex).

Stationarity of the AR(2) Process

It may be shown that, subject to the condition that et is independent of Yt − 1, Yt − 2,
Yt − 3,..., a stationary solution to Equation (4.3.9) exists if and only if the roots of the AR
characteristic equation exceed 1 in absolute value (modulus). We sometimes say that the
roots should lie outside the unit circle in the complex plane. This statement will general-
ize to the pth-order case without change.†

† It also applies in the first-order case, where the AR characteristic equation is just = 0
with root 1/φ, which exceeds 1 in absolute value if and only if .

ψj φ j=

φ 1<

σe
2 0> Yt φYt 1– et+=

φ 1< φ 1<

Yt φYt 1– et+=

Yt φ1Yt 1– φ2Yt 2– et+ +=

φ x( ) 1 φ1x– φ2x2–=

1 φ1x– φ2x2– 0=

1 φx–
φ 1<
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In the second-order case, the roots of the quadratic characteristic equation are easily
found to be

(4.3.10)

For stationarity, we require that these roots exceed 1 in absolute value. In Appendix
B, page 84, we show that this will be true if and only if three conditions are satisfied:

(4.3.11)

As with the AR(1) model, we call these the stationarity conditions for the AR(2)
model. This stationarity region is displayed in Exhibit 4.17.

Exhibit 4.17 Stationarity Parameter Region for AR(2) Process

The Autocorrelation Function for the AR(2) Process

To derive the autocorrelation function for the AR(2) case, we take the defining recursive
relationship of Equation (4.3.9), multiply both sides by Yt − k, and take expectations.
Assuming stationarity, zero means, and that et is independent of Yt − k, we get

(4.3.12)

or, dividing through by γ0,

(4.3.13)

Equations (4.3.12) and/or (4.3.13) are usually called the Yule-Walker equations, espe-
cially the set of two equations obtained for k = 1 and 2. Setting k = 1 and using ρ0 = 1
and ρ−1 = ρ1, we get  and so

φ1 φ1
2 4φ2+±

2φ2–
-------------------------------------

φ1 φ2 1,<+ φ2 φ1 1,<– and φ2 1<
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2 4φ2+ 0=
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(4.3.14)

Using the now known values for ρ1 (and ρ0), Equation (4.3.13) can be used with k = 2 to
obtain

(4.3.15)

Successive values of ρk may be easily calculated numerically from the recursive rela-
tionship of Equation (4.3.13).

Although Equation (4.3.13) is very efficient for calculating autocorrelation values
numerically from given values of φ1 and φ2, for other purposes it is desirable to have a
more explicit formula for ρk. The form of the explicit solution depends critically on the
roots of the characteristic equation . Denoting the reciprocals of
these roots by G1 and G2, it is shown in Appendix B, page 84, that

For the case G1 ≠ G2, it can be shown that we have

(4.3.16)

If the roots are complex (that is, if ), then ρk may be rewritten as

(4.3.17)

where  and Θ and Φ are defined by  and 
.

For completeness, we note that if the roots are equal ( ), then we have

(4.3.18)

A good discussion of the derivations of these formulas can be found in Fuller (1996,
Section 2.5).

The specific details of these formulas are of little importance to us. We need only
note that the autocorrelation function can assume a wide variety of shapes. In all cases,
the magnitude of ρk dies out exponentially fast as the lag k increases. In the case of com-
plex roots, ρk displays a damped sine wave behavior with damping factor R, ,
frequency Θ, and phase Φ. Illustrations of the possible shapes are given in Exhibit
4.18. (The R function ARMAacf discussed on page 450 is useful for plotting.)

ρ1
φ1

1 φ2–
--------------=

ρ2 φ1ρ1 φ2ρ0+=

φ2 1 φ2–( ) φ1
2+

1 φ2–
--------------------------------------=

1 φ1x– φ2x2– 0=

G1
φ1 φ1

2 4φ2+–

2
-------------------------------------= and G2

φ1 φ1
2 4φ2++

2
-------------------------------------=

ρk
1 G2

2–( )G1
k 1+ 1 G1

2–( )G2
k 1+–

G1 G2–( ) 1 G1G2+( )
-----------------------------------------------------------------------------= for k 0≥

φ1
2 4φ2+ 0<

ρk Rk Θk Φ+( )sin
Φ( )sin

-------------------------------= for k 0≥

R φ2–= Θ( )cos φ1 2 φ2–( )⁄= Φ( )tan =
1 φ2–( ) 1 φ2+( )⁄[ ]

φ1
2 4φ2+ 0=

ρk 1
1 φ+ 2

1 φ2–
---------------k+⎝ ⎠

⎛ ⎞ φ1

2
-----⎝ ⎠

⎛ ⎞
k

= for k = 0, 1, 2,...

0 R 1<≤



74 Models for Stationary Time Series

Exhibit 4.18 Autocorrelation Functions for Several AR(2) Models

Exhibit 4.19 displays the time plot of a simulated AR(2) series with φ1 = 1.5 and
φ2 = −0.75. The periodic behavior of ρk shown in Exhibit 4.18 is clearly reflected in the
nearly periodic behavior of the series with the same period of 360/30 = 12 time units. If
Θ is measured in radians, 2π/Θ is sometimes called the quasi-period of the AR(2) pro-
cess.

Exhibit 4.19 Time Plot of an AR(2) Series with φ1 = 1.5 and φ2 = −0.75

> win.graph(width=4.875,height=3,pointsize=8)
> data(ar2.s); plot(ar2.s,ylab=expression(Y[t]),type='o')
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The Variance for the AR(2) Model

The process variance γ0 can be expressed in terms of the model parameters φ1, φ2, and
as follows: Taking the variance of both sides of Equation (4.3.9) yields

(4.3.19)

Setting k = 1 in Equation (4.3.12) gives a second linear equation for γ0 and γ1,
, which can be solved simultaneously with Equation (4.3.19) to

obtain

(4.3.20)

The ψ-Coefficients for the AR(2) Model

The ψ-coefficients in the general linear process representation for an AR(2) series are
more complex than for the AR(1) case. However, we can substitute the general linear
process representation using Equation (4.1.1) for Yt, for Yt − 1, and for Yt − 2 into

. If we then equate coefficients of ej , we get the recursive
relationships

(4.3.21)

These may be solved recursively to obtain ψ0 = 1, ψ1 = φ1, , and so on.
These relationships provide excellent numerical solutions for the ψ-coefficients for
given numerical values of φ1 and φ2.

One can also show that, for G1 ≠ G2, an explicit solution is

(4.3.22)

where, as before, G1 and G2 are the reciprocals of the roots of the AR characteristic
equation. If the roots are complex, Equation (4.3.22) may be rewritten as

(4.3.23)

a damped sine wave with the same damping factor R and frequency Θ as in Equation
(4.3.17) for the autocorrelation function.

For completeness, we note that if the roots are equal, then

(4.3.24)
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---------------⎝ ⎠
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----------------------------------=
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ψj φ1ψj 1–– φ2ψj 2–– 0    for j =  2, 3, ...= ⎭
⎪
⎬
⎪
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ψ2 φ1
2 φ2+=
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j 1+ G 2
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---------------------------------=

ψj R j j 1+( )Θ[ ]sin
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---------------------------------
⎩ ⎭
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The General Autoregressive Process

Consider now the pth-order autoregressive model

(4.3.25)

with AR characteristic polynomial

(4.3.26)

and corresponding AR characteristic equation

(4.3.27)

As noted earlier, assuming that et is independent of Yt − 1, Yt − 2, Yt − 3, ... a station-
ary solution to Equation (4.3.27) exists if and only if the p roots of the AR characteristic
equation each exceed 1 in absolute value (modulus). Other relationships between poly-
nomial roots and coefficients may be used to show that the following two inequalities
are necessary for stationarity. That is, for the roots to be greater than 1 in modulus, it is
necessary, but not sufficient, that both

(4.3.28)

Assuming stationarity and zero means, we may multiply Equation (4.3.25) by Yt − k,
take expectations, divide by γ0, and obtain the important recursive relationship

(4.3.29)

Putting k = 1, 2,..., and p into Equation (4.3.29) and using ρ0 = 1 and ρ−k = ρk, we get
the general Yule-Walker equations

(4.3.30)

Given numerical values for φ1, φ2, ... , φp, these linear equations can be solved to
obtain numerical values for ρ1, ρ2, ... , ρp. Then Equation (4.3.29) can be used to obtain
numerical values for ρk at any number of higher lags.

Noting that

we may multiply Equation (4.3.25) by Yt, take expectations, and find

Yt φ1Yt 1– φ2Yt 2–
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E etYt( ) E et φ1Yt 1– φ2Yt 2–
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which, using ρk = γk/γ0, can be written as

(4.3.31)

and express the process variance γ0 in terms of the parameters , φ1, φ2, ... , φp, and the
now known values of ρ1, ρ2, ... , ρp. Of course, explicit solutions for ρk are essentially
impossible in this generality, but we can say that ρk will be a linear combination of
exponentially decaying terms (corresponding to the real roots of the characteristic equa-
tion) and damped sine wave terms (corresponding to the complex roots of the character-
istic equation).

Assuming stationarity, the process can also be expressed in the general linear pro-
cess form of Equation (4.1.1), but the ψ-coefficients are complicated functions of the
parameters φ1, φ2,..., φp. The coefficients can be found numerically; see Appendix C on
page 85.

4.4 The Mixed Autoregressive Moving Average Model

If we assume that the series is partly autoregressive and partly moving average, we
obtain a quite general time series model. In general, if

(4.4.1)

we say that {Yt} is a mixed autoregressive moving average process of orders p and q,
respectively; we abbreviate the name to ARMA(p,q). As usual, we discuss an important
special case first.†

The ARMA(1,1) Model

The defining equation can be written

(4.4.2)

To derive Yule-Walker type equations, we first note that

and

† In mixed models, we assume that there are no common factors in the autoregressive and
moving average polynomials. If there were, we could cancel them and the model would
reduce to an ARMA model of lower order. For ARMA(1,1), this means θ ≠ φ.
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If we multiply Equation (4.4.2) by Yt−k and take expectations, we have

(4.4.3)

Solving the first two equations yields

(4.4.4)

and solving the simple recursion gives

(4.4.5)

Note that this autocorrelation function decays exponentially as the lag k increases.
The damping factor is φ, but the decay starts from initial value ρ1, which also depends
on θ. This is in contrast to the AR(1) autocorrelation, which also decays with damping
factor φ but always from initial value ρ0 = 1. For example, if φ = 0.8 and θ = 0.4, then
ρ1 = 0.523, ρ2 = 0.418, ρ3 = 0.335, and so on. Several shapes for ρk are possible,
depending on the sign of ρ1 and the sign of φ.

The general linear process form of the model can be obtained in the same manner
that led to Equation (4.3.8). We find

, (4.4.6)

that is,

We should now mention the obvious stationarity condition , or equivalently
the root of the AR characteristic equation 1 − φx = 0 must exceed unity in absolute
value.

For the general ARMA(p,q) model, we state the following facts without proof:
Subject to the condition that et is independent of Yt − 1, Yt − 2, Yt − 3,…, a stationary solu-
tion to Equation (4.4.1) exists if and only if all the roots of the AR characteristic equa-
tion φ(x) = 0 exceed unity in modulus.

If the stationarity conditions are satisfied, then the model can also be written as a
general linear process with ψ-coefficients determined from
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(4.4.7)

where we take ψj = 0 for j < 0 and θj = 0 for j > q.
Again assuming stationarity, the autocorrelation function can easily be shown to

satisfy
(4.4.8)

Similar equations can be developed for k = 1, 2, 3, ... , q that involve θ1, θ2, ... , θq. An
algorithm suitable for numerical computation of the complete autocorrelation function
is given in Appendix C on page 85. (This algorithm is implemented in the R function
named ARMAacf.)

4.5 Invertibility

We have seen that for the MA(1) process we get exactly the same autocorrelation func-
tion if θ is replaced by 1/θ. In the exercises, we find a similar problem with nonunique-
ness for the MA(2) model. This lack of uniqueness of MA models, given their
autocorrelation functions, must be addressed before we try to infer the values of param-
eters from observed time series. It turns out that this nonuniqueness is related to the
seemingly unrelated question stated next.

An autoregressive process can always be reexpressed as a general linear process
through the ψ-coefficients so that an AR process may also be thought of as an infi-
nite-order moving average process. However, for some purposes, the autoregressive rep-
resentations are also convenient. Can a moving average model be reexpressed as an
autoregression?

To fix ideas, consider an MA(1) model:

(4.5.1)

First rewriting this as et = Yt + θet−1 and then replacing t by t − 1 and substituting for
et − 1 above, we get

If , we may continue this substitution “infinitely” into the past and obtain the
expression [compare with Equations (4.3.7) and (4.3.8)]
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or

(4.5.2)

If , we see that the MA(1) model can be inverted into an infinite-order autoregres-
sive model. We say that the MA(1) model is invertible if and only if .

For a general MA(q) or ARMA(p,q) model, we define the MA characteristic
polynomial as

(4.5.3)

and the corresponding MA characteristic equation

(4.5.4)

It can be shown that the MA(q) model is invertible; that is, there are coefficients πj
such that

(4.5.5)

if and only if the roots of the MA characteristic equation exceed 1 in modulus. (Com-
pare this with stationarity of an AR model.)

It may also be shown that there is only one set of parameter values that yield an
invertible MA process with a given autocorrelation function. For example, Yt =
et + 2et − 1 and Yt = et + ½et − 1 both have the same autocorrelation function, but only the
second one with root −2 is invertible. From here on, we will restrict our attention to the
physically sensible class of invertible models.

For a general ARMA(p,q) model, we require both stationarity and invertibility.

4.6 Summary

This chapter introduces the simple but very useful autoregressive, moving average
(ARMA) time series models. The basic statistical properties of these models were
derived in particular for the important special cases of moving averages of orders 1 and
2 and autoregressive processes of orders 1 and 2. Stationarity and invertibility issues
have been pursued for these cases. Properties of mixed ARMA models have also been
investigated. You should be well-versed in the autocorrelation properties of these mod-
els and the various representations of the models.
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EXERCISES

4.1 Use first principles to find the autocorrelation function for the stationary process
defined by

4.2 Sketch the autocorrelation functions for the following MA(2) models with param-
eters as specified:
(a) θ1 = 0.5 and θ2 = 0.4.
(b) θ1 = 1.2 and θ2 = −0.7.
(c) θ1 = −1 and θ2 = −0.6.

4.3 Verify that for an MA(1) process

4.4 Show that when θ is replaced by 1/θ, the autocorrelation function for an MA(1)
process does not change.

4.5 Calculate and sketch the autocorrelation functions for each of the following
AR(1) models. Plot for sufficient lags that the autocorrelation function has nearly
died out.
(a) φ1 = 0.6.
(b) φ1 = −0.6.
(c) φ1 = 0.95. (Do out to 20 lags.)
(d) φ1 = 0.3.

4.6 Suppose that {Yt} is an AR(1) process with −1 < φ < +1.
(a) Find the autocovariance function for Wt = ∇Yt = Yt − Yt−1 in terms of φ and

.
(b) In particular, show that Var(Wt) = 2 /(1+φ).

4.7 Describe the important characteristics of the autocorrelation function for the fol-
lowing models: (a) MA(1), (b) MA(2), (c) AR(1), (d) AR(2), and (e) ARMA(1,1).

4.8 Let {Yt} be an AR(2) process of the special form Yt = φ2Yt − 2 + et. Use first prin-
ciples to find the range of values of φ2 for which the process is stationary.

4.9 Use the recursive formula of Equation (4.3.13) to calculate and then sketch the
autocorrelation functions for the following AR(2) models with parameters as
specified. In each case, specify whether the roots of the characteristic equation are
real or complex. If the roots are complex, find the damping factor, R, and fre-
quency, Θ, for the corresponding autocorrelation function when expressed as in
Equation (4.3.17), on page 73.
(a) φ1 = 0.6 and φ2 = 0.3.
(b) φ1 = −0.4 and φ2 = 0.5.
(c) φ1 = 1.2 and φ2 = −0.7.
(d) φ1 = −1 and φ2 = −0.6.
(e) φ1 = 0.5 and φ2 = −0.9.
(f) φ1 = −0.5 and φ2 = −0.6.
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4.10 Sketch the autocorrelation functions for each of the following ARMA models:
(a) ARMA(1,1) with φ = 0.7 and θ = 0.4.
(b) ARMA(1,1) with φ = 0.7 and θ = −0.4.

4.11 For the ARMA(1,2) model Yt = 0.8Yt − 1 + et + 0.7et − 1 + 0.6et − 2, show that
(a) ρk = 0.8ρk−1 for k > 2.
(b) ρ2 = 0.8ρ1 + 0.6 /γ0.

4.12 Consider two MA(2) processes, one with θ1 = θ2 = 1/6 and another with θ1 = −1
and θ2 = 6.
(a) Show that these processes have the same autocorrelation function.
(b) How do the roots of the corresponding characteristic polynomials compare?

4.13 Let {Yt} be a stationary process with ρk = 0 for k > 1. Show that we must have
|ρ1| ≤ ½. (Hint: Consider Var(Yn + 1 + Yn + + Y1) and then Var(Yn + 1 − Yn +
Yn − 1 −  ± Y1). Use the fact that both of these must be nonnegative for all n.)

4.14 Suppose that {Yt} is a zero mean, stationary process with |ρ1| < 0.5 and ρk = 0 for
k > 1. Show that {Yt} must be representable as an MA(1) process. That is, show
that there is a white noise sequence {et} such that Yt = et − θet − 1, where ρ1 is cor-
rect and et is uncorrelated with Yt − k for k > 0. (Hint: Choose θ such that |θ| < 1
and ρ1 = −θ/(1 + θ2); then let . If we assume that {Yt} is a nor-
mal process, et will also be normal, and zero correlation is equivalent to indepen-
dence.)

4.15 Consider the AR(1) model Yt = φYt − 1 + et. Show that if |φ| = 1 the process cannot
be stationary. (Hint: Take variances of both sides.)

4.16 Consider the “nonstationary” AR(1) model Yt = 3Yt−1 + et.
(a) Show that  satisfies the AR(1) equation.
(b) Show that the process defined in part (a) is stationary.
(c) In what way is this solution unsatisfactory?

4.17 Consider a process that satisfies the AR(1) equation Yt = ½Yt − 1 + et.
(a) Show that Yt = 10(½)t + et + ½et − 1 + (½)2et − 2 + is a solution of the AR(1)

equation.
(b) Is the solution given in part (a) stationary?

4.18 Consider a process that satisfies the zero-mean, “stationary” AR(1) equation Yt =
φYt − 1 + et with −1 < φ < +1. Let c be any nonzero constant, and define Wt = Yt +
cφt.
(a) Show that E(Wt) = cφt.
(b) Show that {Wt} satisfies the “stationary” AR(1) equation Wt = φWt − 1 + et.
(c) Is {Wt} stationary?

4.19 Consider an MA(6) model with θ1 = 0.5, θ2 = −0.25, θ3 = 0.125, θ4 = −0.0625,
θ5 = 0.03125, and θ6 = −0.015625. Find a much simpler model that has nearly the
same ψ-weights.

4.20 Consider an MA(7) model with θ1 = 1, θ2 = −0.5, θ3 = 0.25, θ4 = −0.125,
θ5 = 0.0625, θ6 = −0.03125, and θ7 = 0.015625. Find a much simpler model that
has nearly the same ψ-weights.
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4.21 Consider the model Yt = et − 1 − et − 2 + 0.5et − 3.
(a) Find the autocovariance function for this process.
(b) Show that this is a certain ARMA(p,q) process in disguise. That is, identify

values for p and q and for the θ’s and φ’s such that the ARMA(p,q) process
has the same statistical properties as {Yt}.

4.22 Show that the statement “The roots of  are
greater than 1 in absolute value” is equivalent to the statement “The roots of

 are less than 1 in absolute value.” (Hint: If
G is a root of one equation, is 1/G a root of the other?)

4.23 Suppose that {Yt} is an AR(1) process with ρ1 = φ. Define the sequence {bt} as
bt = Yt − φYt + 1.
(a) Show that Cov(bt,bt − k) = 0 for all t and k.
(b) Show that Cov(bt,Yt + k) = 0 for all t and k > 0.

4.24 Let {et} be a zero-mean, unit-variance white noise process. Consider a process
that begins at time t = 0 and is defined recursively as follows. Let Y0 = c1e0 and
Y1 = c2Y0 + e1. Then let Yt = φ1Yt − 1 + φ2Yt − 2 + et for t > 1 as in an AR(2) pro-
cess.
(a) Show that the process mean is zero.
(b) For particular values of φ1 and φ2 within the stationarity region for an AR(2)

model, show how to choose c1 and c2 so that both Var(Y0) = Var(Y1) and the
lag 1 autocorrelation between Y1 and Y0 match that of a stationary AR(2) pro-
cess with parameters φ1 and φ2.

(c) Once the process {Yt} is generated, show how to transform it to a new process
that has any desired mean and variance. (This exercise suggests a convenient
method for simulating stationary AR(2) processes.)

4.25 Consider an “AR(1)” process satisfying Yt = φYt − 1 + et, where φ can be any num-
ber and {et} is a white noise process such that et is independent of the past {Yt − 1,
Yt − 2,…}. Let Y0 be a random variable with mean μ0 and variance .
(a) Show that for t > 0 we can write

Yt = et + φet − 1 + φ2et − 2 + φ3et − 3 + + φt−1e1 + φtY0.

(b) Show that for t > 0 we have E(Yt) = φtμ0.
(c) Show that for t > 0

(d) Suppose now that μ0 = 0. Argue that, if {Yt} is stationary, we must have .
(e) Continuing to suppose that μ0 = 0, show that, if {Yt} is stationary, then

and so we must have |φ| <1.
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Appendix B: The Stationarity Region for an AR(2) Process

In the second-order case, the roots of the quadratic characteristic polynomial are easily
found to be

(4.B.1)

For stationarity we require that these roots exceed 1 in absolute value. We now
show that this will be true if and only if three conditions are satisfied:

(4.B.2)

Proof: Let the reciprocals of the roots be denoted G1 and G2. Then

Similarly,

We now divide the proof into two cases corresponding to real and complex roots.
The roots will be real if and only if .

I. Real Roots: for i = 1 and 2 if and only if

or

.

Consider just the first inequality. Now   if and only if
 if and only if  if and only if ,

or .

The inequality  is treated similarly and leads to .
These equations together with  define the stationarity region for the

real root case shown in Exhibit 4.17.
II. Complex Roots: Now . Here G1 and G2 will be complex conju-

gates and if and only if . But
 so that . This together with the inequality  defines the part

of the stationarity region for complex roots shown in Exhibit 4.17 and establishes Equa-
tion (4.3.11). This completes the proof.
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Appendix C: The Autocorrelation Function for ARMA(p,q)

Let {Yt} be a stationary, invertible ARMA(p,q) process. Recall that we can always write
such a process in general linear process form as

(4.C.1)

where the ψ-weights can be obtained recursively from Equations (4.4.7), on page 79.
We then have

(4.C.2)

Thus the autocovariance must satisfy

(4.C.3)

where θ0 = −1 and the last sum is absent if k > q. Setting k = 0, 1, …, p and using γ−k =
γk leads to p + 1 linear equations in γ0, γ1, …, γp.

(4.C.4)

where θj = 0 if j > q.
For a given set of parameter values , φ’s, and θ’s (and hence ψ’s), we can solve

the linear equations to obtain γ0, γ1,…, γp. The values of γk for k > p can then be evalu-
ated from the recursion in Equations (4.4.8), on page 79. Finally, ρk is obtained from ρk
= γk/γ0.
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