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CHAPTER 3

TRENDS

In a general time series, the mean function is a totally arbitrary function of time. In a sta-
tionary time series, the mean function must be constant in time. Frequently we need to
take the middle ground and consider mean functions that are relatively simple (but not
constant) functions of time. These trends are considered in this chapter.

3.1 Deterministic Versus Stochastic Trends

“Trends” can be quite elusive. The same time series may be viewed quite differently by
different analysts. The simulated random walk shown in Exhibit 2.1 might be consid-
ered to display a general upward trend. However, we know that the random walk process
has zero mean for all time. The perceived trend is just an artifact of the strong positive
correlation between the series values at nearby time points and the increasing variance
in the process as time goes by. A second and third simulation of exactly the same pro-
cess might well show completely different “trends.” We ask you to produce some addi-
tional simulations in the exercises. Some authors have described such trends as
stochastic trends (see Box, Jenkins, and Reinsel, 1994), although there is no generally
accepted definition of a stochastic trend.

The average monthly temperature series plotted in Exhibit 1.7 on page 6, shows a
cyclical or seasonal trend, but here the reason for the trend is clear—the Northern
Hemisphere’s changing inclination toward the sun. In this case, a possible model might
be Yt = μt + Xt, where μt is a deterministic function that is periodic with period 12; that
is μt, should satisfy

We might assume that Xt, the unobserved variation around μt, has zero mean for all t so
that indeed μt is the mean function for the observed series Yt. We could describe this
model as having a deterministic trend as opposed to the stochastic trend considered
earlier. In other situations we might hypothesize a deterministic trend that is linear in
time (that is,  μt = β0 + β1t) or perhaps a quadratic time trend,  μt = β0 + β1t + β2t2. Note
that an implication of the model Yt = μt + Xt with E(Xt) = 0 for all t is that the determin-
istic trend μt applies for all time. Thus, if μt = β0 + β1t, we are assuming that the same
linear time trend applies forever. We should therefore have good reasons for assuming
such a model—not just because the series looks somewhat linear over the time period
observed.

μt μt 12–= for all t
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In this chapter, we consider methods for modeling deterministic trends. Stochastic
trends will be discussed in Chapter 5, and stochastic seasonal models will be discussed
in Chapter 10. Many authors use the word trend only for a slowly changing mean func-
tion, such as a linear time trend, and use the term seasonal component for a mean func-
tion that varies cyclically. We do not find it useful to make such distinctions here.

3.2 Estimation of a Constant Mean

We first consider the simple situation where a constant mean function is assumed. Our
model may then be written as

(3.2.1)

where E(Xt) = 0 for all t. We wish to estimate μ with our observed time series Y1, Y2,…,
Yn. The most common estimate of μ is the sample mean or average defined as

(3.2.2)

Under the minimal assumptions of Equation (3.2.1), we see that E( ) = μ; there-
fore  is an unbiased estimate of μ. To investigate the precision of  as an estimate of
μ, we need to make further assumptions concerning Xt.

Suppose that {Yt}, (or, equivalently, {Xt} of Equation (3.2.1)) is a stationary time
series with autocorrelation function ρk. Then, by Exercise 2.17, we have

(3.2.3)

Notice that the first factor, γ0/n, is the process (population) variance divided by the sam-
ple size—a concept with which we are familiar in simpler random sampling contexts. If
the series {Xt} of Equation (3.2.1) is just white noise, then ρk = 0 for k > 0 and 
reduces to simply γ0/n. 

In the (stationary) moving average model Yt = et − ½et − 1, we find that ρ1 = −0.4
and ρk = 0 for k > 1. In this case, we have

For values of n usually occurring in time series (n > 50, say), the factor (n − 1)/n
will be close to 1, so that we have
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We see that the negative correlation at lag 1 has improved the estimation of the mean
compared with the estimation obtained in the white noise (random sample) situation.
Because the series tends to oscillate back and forth across the mean, the sample mean
obtained is more precise.

On the other hand, if ρk ≥ 0 for all k ≥ 1, we see from Equation (3.2.3) that 
will be larger than γ0/n. Here the positive correlations make estimation of the mean more
difficult than in the white noise case. In general, some correlations will be positive and
some negative, and Equation (3.2.3) must be used to assess the total effect.

For many stationary processes, the autocorrelation function decays quickly enough
with increasing lags that

(3.2.4)

(The random cosine wave of Chapter 2 is an exception.)
Under assumption (3.2.4) and given a large sample size n, the following useful

approximation follows from Equation (3.2.3) (See Anderson, 1971, p. 459, for example)

(3.2.5)

Notice that to this approximation the variance is inversely proportional to the sample
size n.

As an example, suppose that ρk = φ|k| for all k, where φ is a number strictly between
−1 and +1. Summing a geometric series yields

(3.2.6)

For a nonstationary process (but with a constant mean), the precision of the sample
mean as an estimate of μ can be strikingly different. As a useful example, suppose that
in Equation (3.2.1) {Xt} is a random walk process as described in Chapter 2. Then
directly from Equation (2.2.8) we have
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so that

(3.2.7)

Notice that in this special case the variance of our estimate of the mean actually
increases as the sample size n increases. Clearly this is unacceptable, and we need to
consider other estimation techniques for nonstationary series.

3.3 Regression Methods

The classical statistical method of regression analysis may be readily used to estimate
the parameters of common nonconstant mean trend models. We shall consider the most
useful ones: linear, quadratic, seasonal means, and cosine trends.

Linear and Quadratic Trends in Time

Consider the deterministic time trend expressed as

(3.3.1)

where the slope and intercept, β1 and β0 respectively, are unknown parameters. The
classical least squares (or regression) method is to choose as estimates of β1 and β0 val-
ues that minimize

The solution may be obtained in several ways, for example, by computing the partial
derivatives with respect to both β’s, setting the results equal to zero, and solving the
resulting linear equations for the β’s. Denoting the solutions by and , we find that

(3.3.2)

where  = (n + 1)/2 is the average of 1, 2,…, n. These formulas can be simplified some-
what, and various versions of the formulas are well-known. However, we assume that
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the computations will be done by statistical software and we will not pursue other
expressions for and here.

Example

Consider the random walk process that was shown in Exhibit 2.1. Suppose we (mistak-
enly) treat this as a linear time trend and estimate the slope and intercept by
least-squares regression. Using statistical software we obtain Exhibit 3.1.

Exhibit 3.1 Least Squares Regression Estimates for Linear Time Trend

> data(rwalk)
> model1=lm(rwalk~time(rwalk))
> summary(model1)

So here the estimated slope and intercept are = 0.1341 and  = −1.008, respec-
tively. Exhibit 3.2 displays the random walk with the least squares regression trend line
superimposed. We will interpret more of the regression output later in Section 3.5 on
page 40 and see that fitting a line to these data is not appropriate.

Exhibit 3.2 Random Walk with Linear Time Trend

> win.graph(width=4.875, height=2.5,pointsize=8)
> plot(rwalk,type='o',ylab='y')
> abline(model1) # add the fitted least squares line from model1

Estimate Std. Error t value Pr(>|t|)

Intercept −1.008 0.2972 −3.39 0.00126

Time 0.1341 0.00848 15.82 < 0.0001
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Cyclical or Seasonal Trends

Consider now modeling and estimating seasonal trends, such as for the average monthly
temperature data in Exhibit 1.7. Here we assume that the observed series can be repre-
sented as

where E(Xt) = 0 for all t.
The most general assumption for μt with monthly seasonal data is that there are 12

constants (parameters), β1, β2,…, and β12, giving the expected average temperature for
each of the 12 months. We may write

(3.3.3)

This is sometimes called a seasonal means model.
As an example of this model consider the average monthly temperature data shown

in Exhibit 1.7 on page 6. To fit such a model, we need to set up indicator variables
(sometimes called dummy variables) that indicate the month to which each of the data
points pertains. The procedure for doing this will depend on the particular statistical
software that you use. We also need to note that the model as stated does not contain an
intercept term, and the software will need to know this also. Alternatively, we could use
an intercept and leave out any one of the β’s in Equation (3.3.3). 

Exhibit 3.3 displays the results of fitting the seasonal means model to the tempera-
ture data. Here the t-values and Pr(>|t|)-values reported are of little interest since they
relate to testing the null hypotheses that the β’s are zero—not an interesting hypothesis
in this case.

Exhibit 3.3 Regression Results for the Seasonal Means Model

Estimate Std. Error t-value Pr(>|t|)

January 16.608 0.987 16.8 < 0.0001

February 20.650 0.987 20.9 < 0.0001

March 32.475 0.987 32.9 < 0.0001

April 46.525 0.987 47.1 < 0.0001

May 58.092 0.987 58.9 < 0.0001

June 67.500 0.987 68.4 < 0.0001

July 71.717 0.987 72.7 < 0.0001

Yt μt Xt+=

μt

β1 for t = 1, 13, 25, ...

β2 for t = 2, 14, 26, ...
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β12 for t =12, 24, 36, ...
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> data(tempdub)
> month.=season(tempdub) # period added to improve table display
> model2=lm(tempdub~month.-1) # -1 removes the intercept term 
> summary(model2)

Exhibit 3.4 shows how the results change when we fit a model with an intercept
term. The software omits the January coefficient in this case. Now the February coeffi-
cient is interpreted as the difference between February and January average tempera-
tures, the March coefficient is the difference between March and January average
temperatures, and so forth. Once more, the t-values and Pr(>|t|) (p-values) are testing
hypotheses of little interest in this case. Notice that the Intercept coefficient plus the
February coefficient here equals the February coefficient displayed in Exhibit 3.3.

Exhibit 3.4 Results for Seasonal Means Model with an Intercept

> model3=lm(tempdub~month.) # January is dropped automatically
> summary(model3)

August 69.333 0.987 70.2 < 0.0001

September 61.025 0.987 61.8 < 0.0001

October 50.975 0.987 51.6 < 0.0001

November 36.650 0.987 37.1 < 0.0001

December 23.642 0.987 24.0 < 0.0001

Estimate Std. Error t-value Pr(>|t|)

Intercept 16.608 0.987 16.83 < 0.0001

February 4.042 1.396 2.90 0.00443

March 15.867 1.396 11.37 < 0.0001

April 29.917 1.396 21.43 < 0.0001

May 41.483 1.396 29.72 < 0.0001

June 50.892 1.396 36.46 < 0.0001

July 55.108 1.396 39.48 < 0.0001

August 52.725 1.396 37.78 < 0.0001

September 44.417 1.396 31.82 < 0.0001

October 34.367 1.396 24.62 < 0.0001

November 20.042 1.396 14.36 < 0.0001

December 7.033 1.396 5.04 < 0.0001

Estimate Std. Error t-value Pr(>|t|)



34 Trends

Cosine Trends

The seasonal means model for monthly data consists of 12 independent parameters and
does not take the shape of the seasonal trend into account at all. For example, the fact
that the March and April means are quite similar (and different from the June and July
means) is not reflected in the model. In some cases, seasonal trends can be modeled eco-
nomically with cosine curves that incorporate the smooth change expected from one
time period to the next while still preserving the seasonality.

Consider the cosine curve with equation

(3.3.4)

We call β (> 0) the amplitude, f the frequency, and Φ the phase of the curve. As t varies,
the curve oscillates between a maximum of β and a minimum of −β. Since the curve
repeats itself exactly every 1/f time units, 1/f is called the period of the cosine wave. As
noted in Chapter 2, Φ serves to set the arbitrary origin on the time axis. For monthly
data with time indexed as 1, 2,…, the most important frequency is f = 1/12, because such
a cosine wave will repeat itself every 12 months. We say that the period is 12.

Equation (3.3.4) is inconvenient for estimation because the parameters β and Φ do
not enter the expression linearly. Fortunately, a trigonometric identity is available that
reparameterizes (3.3.4) more conveniently, namely

(3.3.5)

where

(3.3.6)

and, conversely,
(3.3.7)

To estimate the parameters β1 and β2 with regression techniques, we simply use
cos(2πft) and sin(2πft) as regressors or predictor variables.

The simplest such model for the trend would be expressed as

(3.3.8)

Here the constant term, β0, can be meaningfully thought of as a cosine with frequency
zero.

In any practical example, we must be careful how we measure time, as our choice
of time measurement will affect the values of the frequencies of interest. For example, if
we have monthly data but use 1, 2, 3,... as our time scale, then 1/12 would be the most
interesting frequency, with a corresponding period of 12 months. However, if we mea-
sure time by year and fractional year, say 1980 for January, 1980.08333 for February of
1980, and so forth, then a frequency of 1 corresponds to an annual or 12 month periodic-
ity.

Exhibit 3.5 is an example of fitting a cosine curve at the fundamental frequency to
the average monthly temperature series.

μt β 2πft Φ+( )cos=

β 2πft Φ+( )cos β1 2πft( )cos β2 2πft( )sin+=

β β1
2 β2

2+  ,= Φ β2– β1⁄( )atan=

β1 β Φ( ),cos= β2 β Φ( )sin=

μt β0 β1 2πft( )cos β2 2πft( )sin+ +=
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Exhibit 3.5 Cosine Trend Model for Temperature Series

> har.=harmonic(tempdub,1)
> model4=lm(tempdub~har.)
> summary(model4)

In this output, time is measured in years, with 1964 as the starting value and a fre-
quency of 1 per year. A graph of the time series values together with the fitted cosine
curve is shown in Exhibit 3.6. The trend fits the data quite well with the exception of
most of the January values, where the observations are lower than the model would pre-
dict.

Exhibit 3.6 Cosine Trend for the Temperature Series

> win.graph(width=4.875, height=2.5,pointsize=8)
> plot(ts(fitted(model4),freq=12,start=c(1964,1)), 

ylab='Temperature',type='l',
> ylim=range(c(fitted(model4),tempdub))); points(tempdub)
> # ylim ensures that the y axis range fits the raw data and the 

fitted values

Additional cosine functions at other frequencies will frequently be used to model
cyclical trends. For monthly series, the higher harmonic frequencies, such as 2/12 and
3/12, are especially pertinent and will sometimes improve the fit at the expense of add-

Coefficient Estimate Std. Error t-value Pr(>|t|)

Intercept 46.2660 0.3088 149.82 < 0.0001

cos(2πt) −26.7079 0.4367 −61.15 < 0.0001

sin(2πt) −2.1697 0.4367 −4.97 <0.0001
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ing more parameters to the model. In fact, it may be shown that any periodic trend with
period 12 may be expressed exactly by the sum of six pairs of cosine-sine functions.
These ideas are discussed in detail in Fourier analysis or spectral analysis. We pursue
these ideas further in Chapters 13 and 14.

3.4 Reliability and Efficiency of Regression Estimates

We assume that the series is represented as Yt = μt + Xt, where μt is a deterministic trend
of the kind considered above and {Xt} is a zero-mean stationary process with autocova-
riance and autocorrelation functions γk and ρk, respectively. Ordinary regression esti-
mates parameters in a linear model according to the criterion of least squares regardless
of whether we are fitting linear time trends, seasonal means, cosine curves, or whatever.

We first consider the easiest case—the seasonal means. As mentioned earlier, the
least squares estimates of the seasonal means are just seasonal averages; thus, if we have
N (complete) years of monthly data, we can write the estimate for the mean for the j th
season as

Since  is an average like  but uses only every 12th observation, Equation
(3.2.3) can be easily modified to give . We replace n by N (years) and ρk by ρ12k
to get

(3.4.1)

We notice that if {Xt} is white noise, then  reduces to γ0/N, as expected. Fur-
thermore, if several ρk are nonzero but ρ12k = 0, then we still have . In
any case, only the seasonal autocorrelations, ρ12, ρ24, ρ36 ,..., enter into Equation
(3.4.1). Since N will rarely be very large (except perhaps for quarterly data), approxima-
tions like those shown in Equation (3.2.5) will usually not be useful.

We turn now to the cosine trends expressed as in Equation (3.3.8). For any fre-
quency of the form f = m/n, where m is an integer satisfying 1 ≤ m < n/2, explicit expres-
sions are available for the estimates  and , the amplitudes of the cosine and sine:

(3.4.2)

(These are effectively the correlations between the time series {Yt} and the cosine and
sine waves with frequency m/n.)

Because these are linear functions of {Yt}, we may evaluate their variances using
Equation (2.2.6). We find
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(3.4.3)

where we have used the fact that . However, the double
sum in Equation (3.4.3) does not, in general, reduce further. A similar expression holds
for  if we replace the cosines by sines.

If {Xt} is white noise, we get just 2γ0/n. If ρ1 ≠ 0, ρk = 0 for k > 1, and m/n = 1/12,
then the variance reduces to

(3.4.4)

To illustrate the effect of the cosine terms, we have calculated some representative val-
ues:

If ρ1 = −0.4, then the large sample multiplier in Equation (3.4.5) is 1+1.732(−0.4) =
0.307 and the variance is reduced by about 70% when compared with the white noise
case.

In some circumstances, seasonal means and cosine trends could be considered as
competing models for a cyclical trend. If the simple cosine model is an adequate model,
how much do we lose if we use the less parsimonious seasonal means model? To
approach this problem, we must first consider how to compare the models. The parame-
ters themselves are not directly comparable, but we can compare the estimates of the
trend at comparable time points.

Consider the two estimates for the trend in January; that is, μ1. With seasonal
means, this estimate is just the January average, which has variance given by Equation
(3.4.1). With the cosine trend model, the corresponding estimate is
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To compute the variance of this estimate, we need one more fact: With this model, the
estimates , , and are uncorrelated.† This follows from the orthogonality rela-
tionships of the cosines and sines involved. See Bloomfield (1976) or Fuller (1996) for
more details. For the cosine model, then, we have

(3.4.6)

For our first comparison, assume that the stochastic component is white noise. Then
the variance of our estimate in the seasonal means model is just γ0/N. For the cosine
model, we use Equation (3.4.6), and Equation (3.4.4) and its sine equivalent, to obtain

since . Thus the ratio of the standard deviation in the cosine
model to that in the seasonal means model is

In particular, for the monthly temperature series, we have n = 144 and N = 12; thus, the
ratio is

Thus, in the cosine model, we estimate the January effect with a standard deviation that
is only half as large as it would be if we estimated with a seasonal means model—a sub-
stantial gain. (Of course, this assumes that the cosine trend plus white noise model is the
correct model.)

Suppose now that the stochastic component is such that ρ1 ≠ 0 but ρk = 0 for k > 1.
With a seasonal means model, the variance of the estimated January effect will be
unchanged (see Equation (3.4.1) on page 36). For the cosine trend model, if we have a
reasonably large sample size, we may use Equation (3.4.5), an identical expression for

, and Equation (3.2.3) on page 28 for to obtain

† This assumes that 1/12 is a “Fourier frequency”; that is, it is of the form m/n. Otherwise,
these estimates are only approximately uncorrelated.
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If ρ1 = −0.4, then we have 0.814γ0/n, and the ratio of the standard deviation in the cosine
case to the standard deviation in the seasonal means case is

If we take n = 144 and N = 12, the ratio is

a very substantial reduction indeed!
We now turn to linear time trends. For these trends, an alternative formula to Equa-

tion (3.3.2) on page 30 for is more convenient. It can be shown that the least squares
estimate of the slope may be written

(3.4.7)

Since the estimate is a linear combination of Y-values, some progress can be made in
evaluating its variance. We have

(3.4.8)

where we have used = n(n2 − 1)/12. Again the double sum does not in gen-
eral reduce.

To illustrate the effect of Equation (3.4.8), consider again the case where ρ1 ≠ 0 but
ρk = 0 for k > 1. Then, after some algebraic manipulation, again involving the sum of
consecutive integers and their squares, Equation (3.4.8) can be reduced to

For large n, we can neglect the 3/n term and use

(3.4.9)
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If ρ1 = −0.4, then 1 + 2ρ1 = 0.2, and then the variance of is only 20% of what it
would be if {Xt} were white noise. Of course, if ρ1 > 0, then the variance would be
larger than for the white noise case.

We turn now to comparing the least squares estimates with the so-called best linear
unbiased estimates (BLUE) or the generalized least squares (GLS) estimates. If the
stochastic component {Xt} is not white noise, estimates of the unknown parameters in
the trend function may be made; they are linear functions of the data, are unbiased, and
have the smallest variances among all such estimates—the so-called BLUE or GLS
estimates. These estimates and their variances can be expressed fairly explicitly by
using certain matrices and their inverses. (Details may be found in Draper and Smith
(1981).) However, constructing these estimates requires complete knowledge of the
covariance function of the stochastic component, a function that is unknown in virtually
all real applications. It is possible to iteratively estimate the covariance function for {Xt}
based on a preliminary estimate of the trend. The trend is then estimated again using the
estimated covariance function for {Xt} and thus iterated to an approximate BLUE for
the trend. These methods are pursued further in Chapter 11.

Fortunately, there are some results based on large sample sizes that support the use
of the simpler least squares estimates for the types of trends that we have considered. In
particular, we have the following result (see Fuller (1996), pp. 476–480, for more
details): We assume that the trend is either a polynomial in time, a trigonometric poly-
nomial, seasonal means, or a linear combination of these. Then, for a very general sta-
tionary stochastic component {Xt}, the least squares estimates for the trend have the
same variance as the best linear unbiased estimates for large sample sizes.

Although the simple least squares estimates may be asymptotically efficient, it does
not follow that the estimated standard deviations of the coefficients as printed out by all
regression routines are correct. We shall elaborate on this point in the next section. We
also caution the reader that the result above is restricted to certain kinds of trends and
cannot, in general, be extended to regression on arbitrary predictor variables, such as
other time series. For example, Fuller (1996, pp. 518–522) shows that if Yt = βZt + Xt,
where {Xt} has a simple stochastic structure but {Zt} is also a stationary series, then the
least squares estimate of β can be very inefficient and biased even for large samples.

3.5 Interpreting Regression Output

We have already noted that the standard regression routines calculate least squares esti-
mates of the unknown regression coefficients—the betas. As such, the estimates are rea-
sonable under minimal assumptions on the stochastic component {Xt}. However, some
of the properties of the regression output depend heavily on the usual regression
assumption that {Xt} is white noise, and some depend on the further assumption that
{Xt} is approximately normally distributed. We begin with the items that depend least
on the assumptions.

Consider the regression output shown in Exhibit 3.7. We shall write for the esti-
mated trend regardless of the assumed parametric form for μt. For example, for the lin-
ear time trend, we have μt = β0 + β1t. For each t, the unobserved stochastic component

β̂1

μ̂t
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Xt can be estimated (predicted) by Yt − . If the {Xt} process has constant variance,
then we can estimate the standard deviation of Xt, namely , by the residual stan-
dard deviation

(3.5.1)

where p is the number of parameters estimated in μt and n − p is the so-called degrees of
freedom for s. The value of s gives an absolute measure of the goodness of fit of the esti-
mated trend—the smaller the value of s, the better the fit. However, a value of s of, say,
60.74 is somewhat difficult to interpret.

A unitless measure of the goodness of fit of the trend is the value of R2, also called
the coefficient of determination or multiple R-squared. One interpretation of R2 is that
it is the square of the sample correlation coefficient between the observed series and the
estimated trend. It is also the fraction of the variation in the series that is explained by
the estimated trend. Exhibit 3.7 is a more complete regression output when fitting the
straight line to the random walk data. This extends what we saw in Exhibit 3.1 on page
31.

Exhibit 3.7 Regression Output for Linear Trend Fit of Random Walk

> model1=lm(rwalk~time(rwalk))
> summary(model1)

According to Exhibit 3.7, about 81% of the variation in the random walk series is
explained by the linear time trend. The adjusted R-squared value is a small adjustment
to R2 that yields an approximately unbiased estimate based on the number of parameters
estimated in the trend. It is useful for comparing models with different numbers of
parameters. Various formulas for computing R2 may be found in any book on regres-
sion, such as Draper and Smith (1981). The standard deviations of the coefficients
labeled Std. Error on the output need to be interpreted carefully. They are appropriate
only when the stochastic component is white noise—the usual regression assumption.

Estimate Std. Error t-value Pr(>|t|)

Intercept −1.007888 0.297245 −3.39 0.00126

Time 0.134087 0.008475 15.82 < 0.0001

Residual standard error 1.137  with 58 degrees of freedom

Multiple R-Squared 0.812

Adjusted R-squared 0.809

F-statistic 250.3 with 1 and 58 df; p-value < 0.0001

μ̂t
γ0

s
1

n p–
------------ Yt μ̂̂t–( )2

t 1=

n

∑=
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For example, in Exhibit 3.7 the value 1.137 is obtained from the square root of the value
given by Equation (3.4.8) when ρk = 0 for k > 0 and with γ0 estimated by s2, that is, to
within rounding,

The important point is that these standard deviations assume a white noise stochastic
component that will rarely be true for time series.

The t-values or t-ratios shown in Exhibit 3.7 are just the estimated regression coef-
ficients, each divided by their respective standard errors. If the stochastic component is
normally distributed white noise, then these ratios provide appropriate test statistics for
checking the significance of the regression coefficients. In each case, the null hypothesis
is that the corresponding unknown regression coefficient is zero. The significance levels
and p-values are determined from the t-distribution with n − p degrees of freedom.

3.6 Residual Analysis

As we have already noted, the unobserved stochastic component {Xt} can be estimated,
or predicted, by the residual

(3.6.1)

Predicted is really a better term. We reserve the term estimate for the guess of an
unknown parameter and the term predictor for an estimate of an unobserved random
variable. We call  the residual corresponding to the tth observation. If the trend model
is reasonably correct, then the residuals should behave roughly like the true stochastic
component, and various assumptions about the stochastic component can be assessed by
looking at the residuals. If the stochastic component is white noise, then the residuals
should behave roughly like independent (normal) random variables with zero mean and
standard deviation s. Since a least squares fit of any trend containing a constant term
automatically produces residuals with a zero mean, we might consider standardizing the
residuals as . However, most statistics software will produce standardized residuals
using a more complicated standard error in the denominator that takes into account the
specific regression model being fit.

With the residuals or standardized residuals in hand, the next step is to examine var-
ious residual plots. We first look at the plot of the residuals over time. If the data are
possibly seasonal, we should use plotting symbols as we did in Exhibit 1.9 on page 7, so
that residuals associated with the same season can be identified easily.

We will use the monthly average temperature series which we fitted with seasonal
means as our first example to illustrate some of the ideas of residual analysis. Exhibit
1.7 on page 6 shows the time series plot of that series. Exhibit 3.8 shows a time series
plot for the standardized residuals of the monthly temperature data fitted by seasonal
means. If the stochastic component is white noise and the trend is adequately modeled,
we would expect such a plot to suggest a rectangular scatter with no discernible trends
whatsoever. There are no striking departures from randomness apparent in this display.

0.008475 12 1.137( )2

60 602 1–( )
----------------------------=

X̂t Yt μ̂t–=

X̂t

X̂t s⁄
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Exhibit 3.9 repeats the time series plot but now with seasonal plotting symbols. Again
there are no apparent patterns relating to different months of the year.

Exhibit 3.8 Residuals versus Time for Temperature Seasonal Means

> plot(y=rstudent(model3),x=as.vector(time(tempdub)),
xlab='Time',ylab='Standardized Residuals',type='o')

Exhibit 3.9 Residuals versus Time with Seasonal Plotting Symbols

> plot(y=rstudent(model3),x=as.vector(time(tempdub)),xlab='Time',
> ylab='Standardized Residuals',type='l')
> points(y=rstudent(model3),x=as.vector(time(tempdub)), 

pch=as.vector(season(tempdub)))
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Next we look at the standardized residuals versus the corresponding trend estimate,
or fitted value, as in Exhibit 3.10. Once more we are looking for patterns. Are small
residuals associated with small fitted trend values and large residuals with large fitted
trend values? Is there less variation for residuals associated with certain sized fitted
trend values or more variation with other fitted trend values? There is somewhat more
variation for the March residuals and less for November, but Exhibit 3.10 certainly does
not indicate any dramatic patterns that would cause us to doubt the seasonal means
model.

Exhibit 3.10 Standardized Residuals versus Fitted Values for the 
Temperature Seasonal Means Model

> plot(y=rstudent(model3),x=as.vector(fitted(model3)), 
xlab='Fitted Trend Values',

> ylab='Standardized Residuals',type='n')
> points(y=rstudent(model3),x=as.vector(fitted(model3)), 

pch=as.vector(season(tempdub)))

Gross nonnormality can be assessed by plotting a histogram of the residuals or stan-
dardized residuals. Exhibit 3.11 displays a frequency histogram of the standardized
residuals from the seasonal means model for the temperature series. The plot is some-
what symmetric and tails off at both the high and low ends as a normal distribution does.
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Exhibit 3.11 Histogram of Standardized Residuals from Seasonal 
Means Model

> hist(rstudent(model3),xlab='Standardized Residuals')

Normality can be checked more carefully by plotting the so-called normal scores or
quantile-quantile (QQ) plot. Such a plot displays the quantiles of the data versus the the-
oretical quantiles of a normal distribution. With normally distributed data, the QQ plot
looks approximately like a straight line. Exhibit 3.12 shows the QQ normal scores plot
for the standardized residuals from the seasonal means model for the temperature series.
The straight-line pattern here supports the assumption of a normally distributed stochas-
tic component in this model.

Exhibit 3.12 Q-Q Plot: Standardized Residuals of Seasonal Means Model

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(rstudent(model3))
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An excellent test of normality is known as the Shapiro-Wilk test.† It essentially cal-
culates the correlation between the residuals and the corresponding normal quantiles.
The lower this correlation, the more evidence we have against normality. Applying that
test to these residuals gives a test statistic of W = 0.9929 with a p-value of 0.6954. We
cannot reject the null hypothesis that the stochastic component of this model is normally
distributed.

Independence in the stochastic component can be tested in several ways. The runs
test examines the residuals in sequence to look for patterns—patterns that would give
evidence against independence. Runs above or below their median are counted. A small
number of runs would indicate that neighboring residuals are positively dependent and
tend to “hang together” over time. On the other hand, too many runs would indicate that
the residuals oscillate back and forth across their median. Then neighboring residuals
are negatively dependent. So either too few or too many runs lead us to reject indepen-
dence. Performing a runs test‡ on these residuals produces the following values:
observed runs = 65, expected runs = 72.875, which leads to a p-value of 0.216 and we
cannot reject independence of the stochastic component in this seasonal means model.

The Sample Autocorrelation Function

Another very important diagnostic tool for examining dependence is the sample auto-
correlation function. Consider any sequence of data Y1, Y2,…, Yn—whether residuals,
standardized residuals, original data, or some transformation of data. Tentatively assum-
ing stationarity, we would like to estimate the autocorrelation function ρk for a variety of
lags k = 1, 2,…. The obvious way to do this is to compute the sample correlation
between the pairs k units apart in time. That is, among (Y1, Y1 + k), (Y2, Y2 + k),
(Y3, Y3 + k),..., and (Yn − k, Yn). However, we modify this slightly, taking into account
that we are assuming stationarity, which implies a common mean and variance for the
series. With this in mind, we define the sample autocorrelation function, rk, at lag k as

(3.6.2)

Notice that we used the “grand mean,” , in all places and have also divided by the
“grand sum of squares” rather than the product of the two separate standard deviations
used in the ordinary correlation coefficient. We also note that the denominator is a sum
of n squared terms while the numerator contains only n − k cross products. For a variety
of reasons, this has become the standard definition for the sample autocorrelation func-
tion. A plot of rk versus lag k is often called a correlogram.

† Royston, P. (1982) “An Extension of Shapiro and Wilk’s W Test for Normality to Large
Samples.” Applied Statistics, 31, 115–124.

‡ R code: runs(rstudent(model3))

rk
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In our present context, we are interested in discovering possible dependence in the
stochastic component; therefore the sample autocorrelation function for the standard-
ized residuals is of interest. Exhibit 3.13 displays the sample autocorrelation for the
standardized residuals from the seasonal means model of the temperature series. All val-
ues are within the horizontal dashed lines, which are placed at zero plus and minus two
approximate standard errors of the sample autocorrelations, namely . The values
of rk are, of course, estimates of ρk. As such, they have their own sampling distributions,
standard errors, and other properties. For now we shall use rk as a descriptive tool and
defer discussion of those topics until Chapters 6 and 8. According to Exhibit 3.13, for k
= 1, 2,..., 21, none of the hypotheses ρk = 0 can be rejected at the usual significance lev-
els, and it is reasonable to infer that the stochastic component of the series is white
noise.

Exhibit 3.13 Sample Autocorrelation of Residuals of Seasonal Means 
Model

> win.graph(width=4.875,height=3,pointsize=8)
> acf(rstudent(model3))

As a second example consider the standardized residuals from fitting a straight line
to the random walk time series. Recall Exhibit 3.2 on page 31, which shows the data and
fitted line. A time series plot of the standardized residuals is shown in Exhibit 3.14.
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Exhibit 3.14 Residuals from Straight Line Fit of the Random Walk

> plot(y=rstudent(model1),x=as.vector(time(rwalk)), 
ylab='Standardized Residuals',xlab='Time',type='o')

In this plot, the residuals “hang together” too much for white noise—the plot is too
smooth. Furthermore, there seems to be more variation in the last third of the series than
in the first two-thirds. Exhibit 3.15 shows a similar effect with larger residuals associ-
ated with larger fitted values.

Exhibit 3.15 Residuals versus Fitted Values from Straight Line Fit

> win.graph(width=4.875, height=3,pointsize=8)
> plot(y=rstudent(model1),x=fitted(model1), 

ylab='Standardized Residuals',xlab='Fitted Trend Line Values', 
type='p')
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The sample autocorrelation function of the standardized residuals, shown in Exhibit
3.16, confirms the smoothness of the time series plot that we observed in Exhibit 3.14.
The lag 1 and lag 2 autocorrelations exceed two standard errors above zero and the lag 5
and lag 6 autocorrelations more than two standard errors below zero. This is not what
we expect from a white noise process.

Exhibit 3.16 Sample Autocorrelation of Residuals from Straight Line 
Model

> acf(rstudent(model1))

Finally, we return to the annual rainfall in Los Angeles shown in Exhibit 1.1 on
page 2. We found no evidence of dependence in that series, but we now look for evi-
dence against normality. Exhibit 3.17 displays the normal quantile-quantile plot for that
series. We see considerable curvature in the plot. A line passing through the first and
third normal quartiles helps point out the departure from a straight line in the plot.
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Exhibit 3.17 Quantile-Quantile Plot of Los Angeles Annual Rainfall Series

> win.graph(width=2.5,height=2.5,pointsize=8)
> qqnorm(larain); qqline(larain)

3.7 Summary

This chapter is concerned with describing, modeling, and estimating deterministic
trends in time series. The simplest deterministic “trend” is a constant-mean function.
Methods of estimating a constant mean were given but, more importantly, assessment of
the accuracy of the estimates under various conditions was considered. Regression
methods were then pursued to estimate trends that are linear or quadratic in time. Meth-
ods for modeling cyclical or seasonal trends came next, and the reliability and efficiency
of all of these regression methods were investigated. The final section began our study
of residual analysis to investigate the quality of the fitted model. This section also intro-
duced the important sample autocorrelation function, which we will revisit throughout
the remainder of the book.

EXERCISES

3.1 Verify Equation (3.3.2) on page 30, for the least squares estimates of β0 and of β1
when the model Yt = β0 + β1t + Xt is considered.

3.2 Suppose Yt = μ + et − et−1. Find . Note any unusual results. In particular,
compare your answer to what would have been obtained if Yt = μ + et. (Hint: You
may avoid Equation (3.2.3) on page 28 by first doing some algebraic simplifica-
tion on .)
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3.3 Suppose Yt = μ + et + et−1. Find . Compare your answer to what would
have been obtained if Yt = μ + et. Describe the effect that the autocorrelation in
{Yt} has on .

3.4 The data file hours contains monthly values of the average hours worked per
week in the U.S. manufacturing sector for July 1982 through June 1987.
(a) Display and interpret the time series plot for these data.
(b) Now construct a time series plot that uses separate plotting symbols for the

various months. Does your interpretation change from that in part (a)?
3.5 The data file wages contains monthly values of the average hourly wages (in dol-

lars) for workers in the U.S. apparel and textile products industry for July 1981
through June 1987.
(a) Display and interpret the time series plot for these data.
(b) Use least squares to fit a linear time trend to this time series. Interpret the

regression output. Save the standardized residuals from the fit for further anal-
ysis.

(c) Construct and interpret the time series plot of the standardized residuals from
part (b).

(d) Use least squares to fit a quadratic time trend to the wages time series. Inter-
pret the regression output. Save the standardized residuals from the fit for fur-
ther analysis.

(e) Construct and interpret the time series plot of the standardized residuals from
part (d).

3.6 The data file beersales contains monthly U.S. beer sales (in millions of barrels)
for the period January 1975 through December 1990.
(a) Display and interpret the plot the time series plot for these data.
(b) Now construct a time series plot that uses separate plotting symbols for the

various months. Does your interpretation change from that in part (a)?
(c) Use least squares to fit a seasonal-means trend to this time series. Interpret the

regression output. Save the standardized residuals from the fit for further anal-
ysis.

(d) Construct and interpret the time series plot of the standardized residuals from
part (c). Be sure to use proper plotting symbols to check on seasonality in the
standardized residuals.

(e) Use least squares to fit a seasonal-means plus quadratic time trend to the beer
sales time series. Interpret the regression output. Save the standardized residu-
als from the fit for further analysis.

(f) Construct and interpret the time series plot of the standardized residuals from
part (e). Again use proper plotting symbols to check for any remaining sea-
sonality in the residuals.

3.7 The data file winnebago contains monthly unit sales of recreational vehicles from
Winnebago, Inc., from November 1966 through February 1972.
(a) Display and interpret the time series plot for these data.
(b) Use least squares to fit a line to these data. Interpret the regression output. Plot

the standardized residuals from the fit as a time series. Interpret the plot.
(c) Now take natural logarithms of the monthly sales figures and display and
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interpret the time series plot of the transformed values.
(d) Use least squares to fit a line to the logged data. Display and interpret the time

series plot of the standardized residuals from this fit.
(e) Now use least squares to fit a seasonal-means plus linear time trend to the

logged sales time series and save the standardized residuals for further analy-
sis. Check the statistical significance of each of the regression coefficients in
the model.

(f) Display the time series plot of the standardized residuals obtained in part (e).
Interpret the plot.

3.8 The data file retail lists total U.K. (United Kingdom) retail sales (in billions of
pounds) from January 1986 through March 2007. The data are not “seasonally
adjusted,” and year 2000 = 100 is the base year.
(a) Display and interpret the time series plot for these data. Be sure to use plotting

symbols that permit you to look for seasonality.
(b) Use least squares to fit a seasonal-means plus linear time trend to this time

series. Interpret the regression output and save the standardized residuals from
the fit for further analysis.

(c) Construct and interpret the time series plot of the standardized residuals from
part (b). Be sure to use proper plotting symbols to check on seasonality.

3.9 The data file prescrip gives monthly U.S. prescription costs for the months
August 1986 to March 1992. These data are from the State of New Jersey’s Pre-
scription Drug Program and are the cost per prescription claim.
(a) Display and interpret the time series plot for these data. Use plotting symbols

that permit you to look for seasonality.
(b) Calculate and plot the sequence of month-to-month percentage changes in the

prescription costs. Again, use plotting symbols that permit you to look for sea-
sonality.

(c) Use least squares to fit a cosine trend with fundamental frequency 1/12 to the
percentage change series. Interpret the regression output. Save the standard-
ized residuals.

(d) Plot the sequence of standardized residuals to investigate the adequacy of the
cosine trend model. Interpret the plot.

3.10 (Continuation of Exercise 3.4) Consider the hours time series again.
(a) Use least squares to fit a quadratic trend to these data. Interpret the regression

output and save the standardized residuals for further analysis.
(b) Display a sequence plot of the standardized residuals and interpret. Use

monthly plotting symbols so that possible seasonality may be readily identi-
fied.

(c) Perform the Runs test of the standardized residuals and interpret the results.
(d) Calculate and interpret the sample autocorrelations for the standardized resid-

uals.
(e) Investigate the normality of the standardized residuals (error terms). Consider

histograms and normal probability plots. Interpret the plots.
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3.11 (Continuation of Exercise 3.5) Return to the wages series.
(a) Consider the residuals from a least squares fit of a quadratic time trend.
(b) Perform a runs test on the standardized residuals and interpret the results.
(c) Calculate and interpret the sample autocorrelations for the standardized resid-

uals.
(d) Investigate the normality of the standardized residuals (error terms). Consider

histograms and normal probability plots. Interpret the plots.
3.12 (Continuation of Exercise 3.6) Consider the time series in the data file beersales.

(a) Obtain the residuals from the least squares fit of the seasonal-means plus qua-
dratic time trend model.

(b) Perform a runs test on the standardized residuals and interpret the results.
(c) Calculate and interpret the sample autocorrelations for the standardized resid-

uals.
(d) Investigate the normality of the standardized residuals (error terms). Consider

histograms and normal probability plots. Interpret the plots.
3.13 (Continuation of Exercise 3.7) Return to the winnebago time series.

(a) Calculate the least squares residuals from a seasonal-means plus linear time
trend model on the logarithms of the sales time series.

(b) Perform a runs test on the standardized residuals and interpret the results.
(c) Calculate and interpret the sample autocorrelations for the standardized resid-

uals.
(d) Investigate the normality of the standardized residuals (error terms). Consider

histograms and normal probability plots. Interpret the plots.
3.14 (Continuation of Exercise 3.8) The data file retail contains U.K. monthly retail

sales figures.
(a) Obtain the least squares residuals from a seasonal-means plus linear time

trend model.
(b) Perform a runs test on the standardized residuals and interpret the results.
(c) Calculate and interpret the sample autocorrelations for the standardized resid-

uals.
(d) Investigate the normality of the standardized residuals (error terms). Consider

histograms and normal probability plots. Interpret the plots.
3.15 (Continuation of Exercise 3.9) Consider again the prescrip time series.

(a) Save the standardized residuals from a least squares fit of a cosine trend with
fundamental frequency 1/12 to the percentage change time series.

(b) Perform a runs test on the standardized residuals and interpret the results.
(c) Calculate and interpret the sample autocorrelations for the standardized resid-

uals.
(d) Investigate the normality of the standardized residuals (error terms). Consider

histograms and normal probability plots. Interpret the plots.
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3.16 Suppose that a stationary time series, {Yt}, has an autocorrelation function of the
form ρk = φk for k > 0, where φ is a constant in the range (−1,+1).

(a) Show that .

(Hint: Use Equation (3.2.3) on page 28, the finite geometric sum 

, and the related sum .)

(b) If n is large, argue that .

(c) Plot  for φ over the range −1 to +1. Interpret the plot in terms
of the precision in estimating the process mean.

3.17 Verify Equation (3.2.6) on page 29. (Hint: You will need the fact that

 for −1 < φ < +1.)

3.18 Verify Equation (3.2.7) on page 30. (Hint: You will need the two sums

 and .)
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