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Learning Goals

¨ Understand the concept of scenario generation
¨ Connect optimization and decision making under 

uncertainty
¤ Intro to stochastic optimization

¨ Learn how to represented uncertainty with a 
scenario tree
¤ Give an idea of how the tree is generated
¤ How to generate correlated scenarios

¨ Learn how to generate scenarios based on the time 
series models we learned in R



Scenario Generation



Motivation

“Wide range of real-world problems involve decision-
making under uncertainty.” 

“If a statistical model can be used to describe this 
uncertainty, the decision problem can be modeled as 

a stochastic optimization problem.” 

Source: Nils L öhndorf , “An empirical analysis of scenario genera:on 
methods for stochas:c op:miza:on”



Stochasticity or Uncertainty

¨ Origin
¤ Future information (e.g. prices or demand)
¤ Lack of reliable data
¤ Measurement errors

¨ In electric energy systems planning
¤ Demand (yearly, seasonal or daily variation, load 

growth
¤ Hydro, Wind and Solar (natural resources)
¤ Availability of generation or network elements
¤ Electricity or Fuel Prices

Source: Andres Ramos, Comillas, Madrid



Stochastic Optimization

¨ Optimizing or making decisions under uncertainty
¨ Why uncertainty?

¤ Exact data is unavailable or expensive
¤ Instead, data is specified by a probability distribution

¨ Obj.: Make the best decisions given the uncertainty

¨ Approach: Multi-stage Model

Given

Probability 
distribution 
over inputs

Stage I

Make advance 
decisions – plan 
ahead or hedge 
against uncertainty

Observe the actual 
input scenario

Stage II

Take recourse
Augment earlier 

solution paying 
a recourse 
cost



Decision Under Uncertainty

¨ Determinist optimization
¤ Best decision when future is known

¨ Stochastic Optimization
¤ Better decision when future is uncertain but with a 

known probability

¨ But how??
¤ Scenario Analysis or scenario tree



Scenario Tree

¨ Tree: represents how the 
stochasticity is revealed over 
time, i.e., the different states 
of the random parameters

¨ Nodes: where decisions are 
taken

¨ Scenarios: path going from 
the root to the leaves

¨ Allow the solution of huge 
problem by solving iteratively 
small size problems



Scenario Tree Generation

¨ Correlation among random parameters should be 
considered

¨ Number of scenarios generated should be enough 
for observing parameter variability

¨ Common methods
¤ Monte Carlo sampling methods
¤ Quasi-Monte Carlo methods
¤ Optimal quantization of probability distributions
¤ And others….

Simulation



Simulations in R

¨ Possible to simulate data with R using random number 
generators of different kinds of variables

¨ Sampling from

rnorm(n, mean = 0, sd = 1) 

rexp(n, rate = 1) 

runif(n, min = 0, max = 25)

Other examples available at:
http://uc-r.github.io/generating_random_numbers/

Uniform distribution

Normal distribution

Exponential distributions

Multinomial distributions sample(1:4,1000,rep=TRUE,prob=c(.2,.3,.2,.3))



Sampling from Multivariate Normal 
Distribution

¨ When sampling the scenarios for multiple variables 
one need to take into account correlation

¨ Easiest way to deal with this is to draw independently 
𝑁[𝜇, 𝜎!] and then pass the correlation through 
Cholesky decomposition

¨ Let R be correlation matrix (𝑛"#$ 𝑥 𝑛"#$) among the 
variables. The Cholesky decomposition of R is a lower 
triangular matrix such that

𝑅 = 𝐿𝐿!

¨ How to get L?
More info: https://en.wikipedia.org/wiki/Cholesky_decomposition



Sampling from Multivariate Normal 
Distribution (c’ed)

¨ Let X be a matrix (𝑛"#$ 𝑥 𝑛%&'() with independent 
identically distributed draws from a N[0, 1]

¨ Define Y such that
𝑌 = 𝐿𝑋

Recall L is the Cholesky decomposition of R

¨ Note that the resulting matrix Y will have order 
𝑛"#$ 𝑥 𝑛%&'(

¨ Y corresponds to the correlated draws



Connecting Scenario and Models 
Learned in TSA



ARIMA Forecasting

¨ Recall the ARMA(1,1) model equation

𝑌! = 𝜙"𝑌!#" + 𝑎! − 𝜃"𝑎!#" 𝑓𝑜𝑟 𝑡 = 1,2, … , 𝑛
where 𝑎!~𝑁. 𝐼. 𝐷. (0, 𝜎$)

¨ From the estimation step you have 𝜙 = 𝜙" 𝜙$ …𝜙% ’ and 𝜎$

¨ One can rewrite this equation as
𝑌!~𝑁. 𝐼. 𝐷. (𝜙"𝑌!#" − 𝜃"𝑎!#", 𝜎$)

¨ Same principle is extended for the more general class of 
ARIMA Models



State Space BSM 

¨ Model equations
𝑦& = 𝜇& + 𝛾& + 𝜀& 𝜀&~𝒩ℐ𝒟(0, 𝜎)*)
𝜇%&' = 𝛽% + 𝜇% + 𝜂% 𝜂%~𝒩ℐ𝒟(0, 𝜎(!)
𝛽%&' = 𝛽% + 𝜉% 𝜉%~𝒩ℐ𝒟(0, 𝜎)

!)
𝛾%&' = −∑*+',-' 𝛾%&'-* + 𝜔% 𝜔%~𝒩ℐ𝒟(0, 𝜎.!)

¨ The observation equation can be rewritten
𝑦&~𝒩ℐ𝒟(𝜇& + 𝛾& , 𝜎)*)
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