wmw ~d
ACTION. . ‘\\\ '

S \-x %

ENV797 - TIME SERIES ANALYSIS
FOR ENERGY AND ENVIRONMENT
APPLICATIONS

Module 11 - Scenario Generation

Prof. Luana Medeiros Marangon Lima, Ph.D.



Learning Goals

e
Understand the concept of scenario generation

Connect optimization and decision making under
uncertainty

Intro to stochastic optimization
Learn how to represented uncertainty with o
scenario tree

Give an idea of how the tree is generated

How to generate correlated scenarios

Learn how to generate scenarios based on the time
series models we learned in R



- Scenario Generation



Motivation
5 5

“Wide range of real-world problems involve decision-
making under uncertainty.”

“If a statistical model can be used to describe this
uncertainty, the decision problem can be modeled as
a stochastic optimization problem.”

Source: Nils L'ohndorf , “An empirical analysis of scenario generation
methods for stochastic optimization”



Stochasticity or Uncertainty

-
Origin
Future information (e.g. prices or demand)
Lack of reliable data
Measurement errors
In electric energy systems planning

Demand (yearly, seasonal or daily variation, load

growth
Hydro, Wind and Solar (natural resources)

Availability of generation or network elements

Electricity or Fuel Prices

Source: Andres Ramos, Comillas, Madrid



Stochastic Optimization
e

Optimizing or making decisions under

Why uncertainty?
Exact data is unavailable or expensive

Instead, data is specified by a probability distribution

Obj.: Make the given the uncertainty
Approach: Multi-stage Model

Make
Probability — plan Take
distribution ahead or Augment earlier
over inputs solution paying
Observe the actual a

input scenario



Decision Under Uncertainty

-1 Determinist optimization @
Best decision when future is known

0 Stochastic Optimization s

Better decision when future is uncertain but with a
known probability

1 But how?e?

Scenario Analysis or scenario tree



Scenario Tree

o1 Tree: represents how the

stochasticity is revealed over
time, i.e., the different states
of the random parameters

1 Nodes: where decisions are
taken

0 Scenarios: path going from CP O20/0/020/0/0
the root to the leaves
. DIOXOIOIOXOIOIC)
o Allow the solution of huge
problem by solving iteratively CYED) @G Y

small size problems 1 1 1




Scenario Tree Generation
S

11 Correlation among random parameters should be
considered

1 Number of scenarios generated should be enough
for observing parameter variability

1 Common methods
Monte Carlo sampling methods |:> Simulation
Quasi-Monte Carlo methods
Optimal quantization of probability distributions
And others....



Simulations in R
S

71 Possible to simulate data with R using random number
generators of different kinds of variables

1 Sampling from

Multinomial distributions sample(1:4,1000,rep=TRUE,prob=c(.2,.3,.2,.3))

Uniform distribution runif(n, min = 0, max = 25)
Normal distribution rnorm(n, mean = 0,sd = 1)
Exponential distributions  rexp(n, rate = 1)
o X I
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SAMPLING
Other examples available at: |

23993
http:/ [uc-r.github.io/generating_random_numbers/ IIQ



Sampling from Multivariate Normal

Distribution
X

When sampling the scenarios for multiple variables
one need to take into account correlation

Easiest way to deal with this is to draw independently
N[u, %] and then pass the correlation through
Cholesky decomposition

Let R be correlation matrix (1,4, X Ny,4-) among the
variables. The Cholesky decomposition of R is a lower
triangular matrix such that

R=LL"

How to get L¢
More info: https: / /en.wikipedia.org /wiki/Cholesky_decomposition



Sampling from Multivariate Normal

Distribution ‘c’ed:

Let X be a matrix (Mg X Ngrep) With independent
identically distributed draws from a N[O, 1]

Define Y such that
Y =LX

Recall L is the Cholesky decomposition of R

Note that the resulting matrix Y will have order

Nyar X Nstep

Y corresponds to the correlated draws



Connecting Scenario and Models

Learned in TSA



ARIMA Forecasting

4
1 Recall the ARMA(1,1) model equation

Yt = (PlYt—l + Ae|— Hlat_l fOT' t = 1,2, ., N
where a;,~N.I.D.(0,0%)

=1 From the estimation step you have ¢ = (([)1 oo ... ¢p)' and g2

1 One can rewrite this equation as

Y,~N.I.D.(¢p Ys_q — 01a;_1,0%)

7 Same principle is extended for the more general class of

ARIMA Models



State Space BSM
-1

1 Model equations

Ve = Ue T Ve T & ee~NID(0, 0f)
Uirr = Pr + U +1; Ne~NID(O, 0_7%)
Bt+1 = Bt +$¢ $e~NID(O, 052)
Yt+1 = — §;%yt+1—j T we we~NID(0,05)

-1 The observation equation can be rewritten

Ve~NID(ue + y¢, 08)
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